IEEE STANDARDS ASSOCIATION N < IEEE

IEEE Standard for Authenticated
Encryption with Length Expansion
for Storage Devices

IEEE Computer Society

Sponsored by the
Cybersecurity and Privacy Standards Committee

IEEE
3 Park Avenue
New York, NY 10016-5997

USA

IEEE Std 1619.1™-2018
(Revision of

IEEE Std 1619.1-2007)

IEEE Std 1619.1™-2018
(Revision of
|IEEE Std 1619.1-2007)

IEEE Standard for Authenticated
Encryption with Length Expansion
for Storage Devices

Sponsor

Cybersecurity and Privacy Standards Committee

IEEE Computer Society

Approved 23 October 2018

IEEE-SA Standards Board

Abstract: Cryptographic and data authentication procedures for storage devices that support length
expansion, such as tape drives, are specified. Such procedures include the following cryptographic
modes of operation for the AES block cipher. CCM, GCM, CBC-HMAC, and XTS-HMAC.

Keywords: authentication, CBC, CCM, cryptography, data storage, encryption, GCM, HMAC,
IEEE 1619.1™ security, tape drive, variable-length block, XTS

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2019 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 25 January 2019. Printed in the United States of America.

IEEE is a registered trademark in the U.5. Patent & Trademark Office, owned by The Institute of Electrical and Electronics Engineers,
Incorporated.

PDF: ISBN 978-1-5044-5454-4 STD23493
Print: ISBN 978-1-5044-5455-1 STDPDZ3493

IEEE prohibits discrimination, harassment, and bullying.
For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.

Mo part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission
of the publisher.

Important Notices and Disclaimers Concerning IEEE Standards Documents

|EEE documents are made available for use subject to important notices and legal disclaimers. These notices
and disclaimers, or a reference to this page, appear in all standards and may be found under the heading
“Important Notices and Disclaimers Concerning IEEE Standards Documents.” They can also be obtained on
request from IEEE or viewed at htip://standards.ieee.org/ipr/disclaimers.html.

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards
Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use,
are developed within |[EEE Societies and the Standards Coordinating Committees of the IEEE Standards
Association ("IEEE-SA") Standards Board. IEEE ("the Institute”) develops its standards through a consensus
development process, approved by the American National Standards Institute ("ANSI™), which brings
together volunteers representing varied viewpoints and interests to achieve the final product. IEEE Standards
are documents developed through scientific, academic, and industry-based technical working groups.
Volunteers in IEEE working groups are not necessarily members of the Institute and participate without
compensation from IEEE. While IEEE administers the process and establishes rules to promote fairness in the
consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of
the information or the soundness of any judgments contained in its standards.

IEEE Standards do not guarantee or ensure safety, security, health, or environmental protection, or ensure
against interference with or from other devices or networks. Implementers and users of IEEE Standards
documents are responsible for determining and complying with all appropriate safety, security, environmental,
health, and interference protection practices and all applicable laws and regulations.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and
expressly disclaims all warranties (express, implied and statutory) not included in this or any other document
relating to the standard, including, but not limited to, the warranties of: merchantability; fithess for a particular
purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In
addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort. IEEE standards
documents are supplied “AS IS” and "WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an |IEEE standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to
the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and
Issued is subject to change brought about through developments in the state of the art and comments received
from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or
her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate,
seek the advice of a competent professional in determining the appropriateness of a given |[EEE standard.

IN NO EVENT SHALL |IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO:
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE
UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND
REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Translations

The IEEE consensus development process involves the review of documents in English only. In the event that

an |[EEE standard is translated, only the English version published by IEEE should be considered the approved
IEEE standard.

Official statements

Astatement, written or oral, that is not processed in accordance with the IEEE-SAStandards Board Operations
Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall
not be considered to be, or be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or
educational courses, an individual presenting information on IEEE standards shall make it clear that his or her
views should be considered the personal views of that individual rather than the formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless

of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice
pertaining to |IEEE Standards documents. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments. Since |IEEE standards represent a
consensus of concerned interests, it is important that any responses to comments and questions also receive
the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards
Coordinating Committees are not able to provide an instant response to comments or questions except in
those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to
Interpretation requests. Any person who would like to participate in revisions to an IEEE standard is welcome

to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SAStandards Board
445 Hoes Lane
Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with
the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory
requirements. Implementers of the standard are responsible for observing or referring to the applicable
regulatory requirements. |IEEE does not, by the publication of its standards, intend to urge action that is not in
compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

|EEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws.They
are made available by |IEEE and are adopted for a wide variety of both public and private uses. These include
both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the
promotion of engineering practices and methods. By making these documents available for use and adoption
by public authorities and private users, |IEEE does not waive any rights in copyright to the documents.

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy
portions of any individual standard for company or organizational internal use or individual, non-commercial
use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer
Service, 222 Rosewood Drive, Danvers, MA01923 USA; +1 978 750 8400. Permission to photocopy portions
of any individual standard for educational classroom use can also be obtained through the Copyright Clearance
Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time
by the issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. A current IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years
old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of
some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that
they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended
through the issuance of amendments, corrigenda, or errata, visit IEEE Xplore at http://ieeexplore.ieee.org/ or
contact IEEE at the address listed previously. For more information about the IEEE-SA or IEEE’s standards
development process, visit the IEEE-SAWebsite at http://standards.ieee.org.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following
URL: hitp:// standards.ieee.org/findstds/errata/index.ntml. Users are encouraged to check this URL
for errata periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the
existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has
filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the |IEEE-
SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate
whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation

or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair
discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not
responsibleforidentifyingEssentialPatentClaimsforwhichalicensemayberequired,forconductinginquiries
into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions
provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are
reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the
validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility.
Further information may be obtained from the IEEE StandardsAssociation.

Participants

At the time this IEEE standard was completed, the Security in Storage Working Group had the

following membership:

Mohsin Awan
Tim Chevalier

Walt Hubis, Chair
Eric Hibbard, Vice Chair

James Hatfield
Glen Jaquette

Thomas
Rivera
Robert Strong

The following members of the individual balloting committee voted on this standard. Balloters may have
voted for approval, disapproval, or abstention.

JohannAmsenga
Demetrio Bucaneg Jr.
John Geldman
Randall Groves

Werner Hoelzl
Noriyuki Ikeuchi
Quist-Aphetsi Kester
Kenneth Lang

Venkatesha
Prasad

Thomas Starai
Walter Struppler
Oren Yuen

When the IEEE-SA Standards Board approved this standard on 23 October 2018, it had the following

membership:

Ted Burse

Guido R. Hiertz
Christel Hunter
Joseph L. Koepfinger*
Thomas Koshy

Hung Ling

Dong Liu

*Member Emeritus

Jean-Philippe Faure, Chair

Gary Hoffman, Vice Chair

John D. Kulick, Past Chair
Konstantinos Karachalios,
Secretary

Xiaohui Liu

Kevin Lu

Daleep Mohla
Andrew Myles

Paul Nikolich
Ronald C. Petersen
Annette D. Reilly

Robby Robson
Dorothy Stanley
Mehmet Ulema
Phil Wennblom
Philip Winston
Howard Wolfman
Jingyi Zhou

Introduction

This introduction is not part of IEEE Std 1619.1-2018, |IEEE Standard for Authenticated Encryption with Length
Expansion for Storage Devices.

The problem of data storage protection has become increasingly important due to legislation that requires the
protection of sensitive information. To address this issue, the Security in Storage Working Group (SISWG) is
developing standards for the protection of information on storage media. This standard provides strong data
protection by specifying encryption with authentication and length expansion.

This standard provides methods suitable for ensuring the privacy and integrity of stored data within
applications requiring a high level of assurance. To this end, this standard specifies the Advanced Encryption
Standard (AES) cipher as used in authenticated-encryption modes.

There are many modes of non-cryptographic attacks that are outside the scope of this standard.
See B.1 for a discussion.

Contents

R O YT YL TR

1.1 Scope...
1.2 F'urpnse

1.3 Descrlptmn chlauses and = [TS
2. INOMMIALIVE B EIEINCES .. oottt et et et e et ettt e e e et e s bt e s s b e b e e s an e e e sbe s e abb e s e ann s
3. Definitions, acronyms, abbreviations, €1C..........cooiiiiiiiiiiiiiiii e e e e e e e e e e e e e e e e bab e aranaes
.. 10

e 13
.14

3.1 Definitions... .
3.2 Acronyms and abbrewatlﬂns
3.3 Mathematical conventions...

L 1T o T=T = [ofo] o7 =] o] 1=
T 1 o T Lo (0
L o o oo] =T 01 =
G T F= 1L LGS =LoX 0T 0 I (0 1= 1 =
O P T Y (= A =T wr oo o (= (0 L = L= TP
4.5 ENCIYPUON TOULINE. ...ttt ettt te et ettt e e et e eeebeasse e e e abas seesea b ae e e e ssas e e eeeanaaeeebaeeesnns
r4 ST = Tot Vo) (o TN o 11 T PRSPPSO
4.7 CryptOgraphiC PAramMEBTEISccciiiiiiiiiiii e ei ettt e e e e e e e e e ee s et seseaesessabababsseseeeseeaessbabanaeseseeeees

5. CryptOgraphiC MOUESciiiiiiiiiiiiiiii e es et te s et e et e e et e ee et teeaeesaeesas s s s b b s e es e e e aesaeaeaeaeeeeeesaenesesnbanns
.21

s 22
e 22
.23

5.1 Overview...

5.2 Counter WIth clpher bluck chalnlng message authentlcatlun C{JdE (CCM}

5.3 Galois/Counter Mode (GCM)... ..

5.4 Cipher block chaining with keyed hash message authentlcatmn CDdE (CBC HMAC)

5.5 Xor-encrypt-xor with tweakable block-cipher with keyed-hash message EUthEI’ltIEHtIDn c:.-:}de

(XTS-HIMAC) .ottt ettt et ettt e e ettt ee s et ee et et ee et e eeees e

6. Cryptographic key management and initialization vector requirements..........ccooooiiiiiiiiiiiiiiic e,

6.1 Random bit generator..............
6.2 Cryptographic key entry and E){pﬂl't
6.3 Handling the cipher key...

6.4 Cryptographic key wrapplng on the sturage medlum

6.5 Initialization vector (V) requirements...

6.6 Creating unique IVs within a self—cﬂntained grc:-up I.
AnnexA(Informative) BiblOgrapny et et
Annex B (INformative) SeCUNLY COMCEIMS.ottt et e e ae s e eesaba e s ba s esabeesnnnseeanss
Annex C (informative) Documentation SUMMEAY ...t e et ae e et a b sessean e essbaeesaanes

ANNEX D (INfOrmMative) TESEVECIOIS ... et et e e s et e e e e

0w w0 L

10
10

14
14
15
17
17
18
19
20

21

25

26
.. 26

e 20

Y

e 20
.. 28

29
31
33
39
40

IEEE Standard for Authenticated
Encryption with Length Expansion
for Storage Devices

1. Overview

1.1 Scope

This standard specifies requirements for cryptographic units that provide encryption and authentication for
data contained within storage media. Full interchange requires additional format specifications (such as
compression algorithms and physical data format) that are beyond the scope of this standard.

1.2 Purpose

This standard is suitable for encryption of data stored on tape because tape easily accommodates length-
expanding ciphertext. In addition, this standard applies to other storage devices if these support storing
extra metadata with each encrypted record. The algorithms of this standard are designed to help ensure the
confidentiality and integrity of stored data within systems requiring a high level of assurance.

1.3 Description of clauses and annexes

— Clause 1 provides an overview of this standard, including scope and purpose.

— Clause 2 lists the normative references that are essential for implementing this standard.

— Clause 3 gives definitions, acronyms, and abbreviations used in this standard.

— Clause 4 provides a description of the components that play roles in this standard.

— Clause 5 describes the cryptographic modes used by the cryptographic unit.

— Clause 6 describes cryptographic key management and initialization vector requirements.

— Annex A(informative) lists bibliographic references that are useful when implementing this standard.

— Annex B (informative) discusses several security issues that an implementer and user should
understand.

— Annex C (informative) provides a summary of documentation requirements.

— Annex D (informative) provides several test vectors useful in verifying a cryptographic unit.

IEEE Std 1619.1-2018
|IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments or corrigenda) applies.

IEEE Std 1619~, IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices.'?
McGrew, D., and J. Viega, The Galois/Counter Mode of Operation (GCM), May 31, 2005.3

NIST FIPS 180-2, Federal Information Processing Standard (FIPS) 180-2 (August 1, 2002), Announcing the
Secure Hash Standard (SHS).#

NIST FIPS 197, Federal Information Processing Standard (FIPS) 197 (November 26, 2001), Announcing the
Advanced Encryption Standard (AES).

NIST FIPS 198, Federal Information Processing Standard (FIPS) 198 (March 2002 updated April 8, 2002),
The Keyed-Hash MessageAuthentication Code (HMAC).

NIST Special Publication 800-38A (NIST SP 800-38A), Recommendation for Block Cipher
Modes of Operation: Methods and Techniques.

NIST Special Publication 800-38C (NIST SP 800-38C), Recommendation for Block Cipher Modes of
Operation: The CCM Mode forAuthentication and Confidentiality.

3. Definitions, acronyms, abbreviations, etc.

3.1 Definitions

For the purposes of this document, the following terms and definitions apply. The IEEE Standards Dictionary
Online should be consulted for terms not defined in this clause.>

additional authenticated data (AAD): Information passed into an authenticated encryption routine
that is authenticated but not encrypted.

advanced encryption standard (AES): The block cipher defined by NIST FIPS 197.5 See also: block cipher.

block cipher: A cryptographic primitive that uses a cipher key to create a pseudo-random permutation of a
fixed-size bit string. See also: cipher key; plaintext; ciphertext.

cipher block chaining (CBC): A cryptographic mode of operation in which the ciphertext output
from each cipher block feeds into the following cipher block (see NIST SP 800-38A).

cipher block chaining initialization vector (CBC-1V): The IV input for the CBC modes, according to NIST
SP 800-38A. See also: CBC-HMAC: initialization vector.

IEEE publications are available from the Institute of Electrical and Electronics Engineers (http://standards.ieee.org/).

2The IEEE standards or products referred to in Clause 2 are trademarks owned by the Institute of Electrical and Electronics Engineers,
Incorporated.

*Available from http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gem-revised-spec.pdf or http://siswg.org/
docs/gem_spec.pdf.

‘NIST publications are available from the National Institute of Standards and Technology (http://www.nist.gov/).

‘IEEE Standards Dictionary Online is available at: http://dictionary.ieee.org.

fInformation on references can be found in Clause 2.

10

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

NOTE—See 5.4.7

cipher block chaining with keyed-hash message authentication code (CBC-HMAC): A family
of cryptographic modes that uses the cipher block chaining (CBC) mode (see NIST SP 800-38A) for
confidentiality and a key-hash message authentication code (HMAC) for integrity (see NIST FIPS 198).

cipher block chaining with keyed-hash message authentication code using secure hash algorithm (CBC-
HMAC-SHA): Afamily of cipher blocking chaining (CBC) modes (see NIST SP800-38A) with a keyed-hash
message authentication code (see NIST FIPS 198) from a member of the secure hash algorithm family (see
NIST FIPS 180-2).

NOTE—See 5.4.

cipher key: A bit string that controls the pseudo-random permutation of an encryption or decryption routine.
See also: cryptographic key; block cipher.

ciphertext record: The result of encrypting a same-length plaintext record using a cryptographic mode of
operation. See also: ciphertext; cryptographic mode of operation; plaintext record.

collision: An event where two independent variables have the same value in a particular context. See also:
initialization vector; plaintext; ciphertext.

counter mode (CTR): A cryptographic mode of operation defined by NIST SP 800-38A in
which the ciphertext is the bitwise exclusive-OR of the plaintext with an encrypted counter.

counter with cipher block chaining message authentication code (CCM): A cryptographic mode of
operation that provides confidentiality with counter mode and integrity with a message authentication code
that uses cipher block chaining (see NIST SP 800-38C).

NOTE—See 5.2.

cryptographically-sound random-bit generator (RBG): A device or algorithm that outputs a sequence of
binary bits that appears to be statistically independent and unbiased. In particular, an RBG generates numbers
that are highly unpredictable, and knowledge of any particular output from an RBG does not reveal any
information about other data generated by the RBG.

NOTE—See 6.1.

cryptographic hash function: A hash function that generates a hash value from an input and that has the
following properties: 1) it is computationally difficult to compute the inverse (i.e., compute the input from the
hash value); 2) it is computationally difficult to find two different inputs that have the same hash value; 3) itis
computationally difficult to find an input whose hash value is a particular value.

cryptographic key: Abit string used as an input into cryptographic primitives. See also: block cipher;
cipher key.

cryptographic mode: See cryptographic mode of operation.
cryptographic mode of operation: An algorithm that includes a block cipher used in a particular configuration

and uses a cipher key to convert plaintext into ciphertext and vice versa. See also: block cipher; cipher key;
plaintext; ciphertext.

"Notes in text, tables, and figures are given for information only, and do not contain requirements needed to implement the standard.

11

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

cryptographic unit: Any set of software, firmware, or hardware that can perform a cryptographic operation.

decryption: The act of producing plaintext from ciphertext. Contrast: encryption. See also: plaintext;
ciphertext; cryptographic key; cryptographic mode of operation.

decryption routine: An instantiation of a cryptographic mode of operation that converts
ciphertext into plaintext.

encrypted record: A collection of fields that includes the output of an encryption operation or authentication
operation (e.g., ciphertext, message authentication code), and optionally contains other information needed
for a subsequent decryption operation (e.g., additional authenticated data, initialization vector). See also:
ciphertext; initialization vector; message authentication code; additional authenticated data.

encryption: The act of producing ciphertext from plaintext. Contrast: decryption. See also: plaintext;
ciphertext; cryptographic key; cryptographic mode of operation.

encryption routine: An instantiation of a cryptographic mode of operation that converts
plaintext into ciphertext.

encryption session: An interval in which a cryptographic unit generates encrypted records using a set of
self-consistent variables, such as unique initialization vectors. See also: encryption; initialization vector;
cryptographic unit.

NOTE—See 6.5.3.

Galois/Counter Mode (GCM): A cryptographic mode of operation that provides confidentiality through
counter mode encryption and integrity through a message authentication code that uses Galois field arithmetic
(see McGrew and Viega, The Galois/Counter Mode of Operation).

NOTE—See 5.3.

host record: A string of plaintext passed to the cryptographic unit from the host. See also: plaintext record,;
cryptographic unit; host.

Initialization vector (IV):An input into an encryption or decryption algorithm that needs not be secret, but has

a high probability of being unique when used with a particular cipher key. See also: encryption; decryption;
encryption session; cipher key.

NOTE—See 6.5.

key encrypting key (KEK): A cryptographic key used only for encrypting or decrypting other cryptographic
keys. See also: cryptographic key; encryption.

keyed-hash message authentication code (HMAC): A message authentication code
defined by NIST FIPS 198 that includes a secret hash key.

key manager: Any device or person that controls the creation, archiving, and destruction of cryptographic
keys. See also: cryptographic key.

NOTE—See 4.2.3.
message authentication code (MAC): A cryptographic checksum that is used to detect intentional

modifications and errors in an encrypted record, and cannot be efficiently forged without knowledge of the
cryptographic key used in the MAC algorithm. See also: encrypted record.

12

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

nonce: A bit string that has a low probability of matching any other nonce in a particular context. See also:
initialization vector.

plaintext: Information that has not been obscured through a cryptographic transformation.
Contrast: ciphertext.

plaintext record: A string of plaintext passed to an encryption routine to produce a same-length ciphertext
record. See also: plaintext; cryptographic unit; encryption; encrypted record; host record.

policies: In cryptography, a set of rules that defines aspects of the management of a cryptographic
system (e.g., encryption, decryption, or bypass rules).

random bit generator (RBG): See: cryptographically-sound random-bit generator.

random nonce: A nonce that completely consists of the output from a random bit generator. See also: nonce;
cryptographically-sound random-bit generator.

Secure Hash Algorithm (SHA): A family of cryptographic hash functions defined by NIST FIPS 180-2. See
also: cryptographic hash function..

self-contained group: Aset of cryptographic units that generate and use Vs in a consistent manner.

Xor-encrypt-xorwith tweak and ciphertext stealing (XTS): The cryptographic mode of operation
described in IEEE Std 1619™,

NOTE—See 6.6.

3.2 Acronyms and abbreviations

AAD additional authenticated data

AES advanced encryption standard

CBC cipher block chaining

CCM counter with cipher block chaining message authentication code
CRC cyclic redundancy check

CTR counter mode

FIPS Federal Information Processing Standards
GCM Galois/Counter Mode

HMAC keyed-hash message authentication code

IV initialization vector

KEK key encrypting key

MAC message authentication code

NIST National Institute of Standards and Technology
RBG (cryptographically-sound) random-bit generator
SHA Secure HashAlgorithm

SP (NIST) special publication

13

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

XOR exclusive OR

XTS xor-encrypt-xor with tweak and ciphertext stealing

3.3 Mathematical conventions

This standard uses decimal, binary, and hexadecimal numbers. For clarity, decimal numbers generally
represent counts, and binary or hexadecimal numbers describe bit patterns or raw binary data.

Decimal numbers are represented in their usual 0, 1, 2, ... format. Binary numbers are represented by a string
of one or more bits followed by the subscript 2. Thus, the decimal number 26 may also be represented as
000110102. Hexadecimal numbers are represented by a string of one or more hexadecimal characters followed
by a subscript 16.

4. General concepts

4.1 Introduction

This standard describes elements of an architecture that is suitable for the cryptographic confidentiality and
integrity of stored data. This architecture includes a model of several components within a typical system that
securely stores and retrieves information. These components are as follows:

— A controller that controls the overall operation of the cryptographic unit and receives status from the
cryptographic unit (see 4.2.1)

— A host that provides plaintext data, in the form of host records, to the cryptographic unit and receives
plaintext data from the cryptographic unit (see 4.2.2)

— A key manager that may provide or negotiate cipher keys and/or key encrypting keys (KEK) to the
cryptographic unit, and that should securely maintain the lifecycle of these cryptographic keys (see
4.2.3)

— Acryptographic unit that performs data formatting, encryption, and decryption, and that may perform
cryptographic key management (see 4.2.4)

— A storage medium that provides non-volatile storage of encrypted records and metadata produced by
the cryptographic unit (see 4.2.5)

This standard specifies requirements only for the cryptographic unit.

An implementer of this standard shall provide documentation to the end-user about the cryptographic unit. This
documentation may be in any form (e.g., electronic, printed on paper) that is easily accessible by the end-user.
Documentation shall include all the required text as specified throughout this standard. The documentation
provides sufficient information to allow optimal use and detailed security evaluation of the cryptographic unit
and its environment. SeeAnnex C for a documentation summary.

Figure 1 shows an example of the interactions among the five components listed above and of subcomponents
contained within each component. Multiple components shown in Figure 1 may exist within a single
embodiment, and multiple instantiations of the same component or subcomponent may exist within a single
system.

14

|IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

Host
/ Host Plaintext /
/ Data \ et Key Manager ™.
Key Archive /
Host /
Record Host Record Policies I
¢ De-formatter ﬂ
ormatter L , |
& S ['
-_ L]
\ ' I O o = E"\} l 4 !5 T
A 0 |§ S 2|*- © / 1S
elz 13 g8 SEElgs &7 3 13
=1} = ol 8 I¥ |8 d|w § O | = O
;'1; - Ila 3 a/ |.Er | o
=
Gr)fptﬂrgraphic ‘ :E I;.; ¥
Unit v Key Ig Key |
. wrapping | |1 | Unwrapping
Plaintext Plaintext Record Routine | Routine
Record De-formatter | | ’ +
Formatter | | 3 / Cipher
i ~
o o ¥ ¥ B Key |
x| T CipherKey, | Cryptographic |
] E %[IV, Tweak, AAD | Parameters
213 28 |
) B E E * I
o
Y | Cipher Key, |
| | IV, Misc.
Encryption Decryption ! I
Routine Routine ! Random Bit |
| Generator |
\ A | I
< < E’ﬁ : |
* Dﬂ;"a"' E 5 I I
N\ 2, q-;..% ﬁlcr: Wrapped [
AN % < : Key |
"‘Zq\% Storage Medium ‘ I |
QO & l
' N _— - J
ﬁf‘g,s.,._ Non- Wrapped |
volatile Key r
Storage -rr - -—-"—-----=-=-=- =
p:
Legend:

Data Flow "
Data . Component _
Storage Operation _ _DF’E*"E_' FE‘”E _

Figure 1—Model showing interactions of components

Subclause 4.2 describes in detail each of the components within Figure 1.

4.2 Components
4.2.1 Controller

The controller is any entity that controls the overall operation of the cryptographic unit. A controller
sends commands to the cryptographic unit and processes status from the cryptographic unit, as needed to

15

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

iImplement the policies defined within the controller. There may be multiple controllers controlling a
particular cryptographic unit.Acontroller may be part of another component such as a host or key
manager.

4.2.2 Host

The host provides host records to the cryptographic unit for encryption, and receives host records from
the cryptographic unit after decryption. A host record contains plaintext data and may be any size that the
cryptographic unit allows.

A typical host includes routines to convert arbitrary host plaintext data into host records and vice versa. Such
host records may be variable-length, depending on the capabilities of the cryptographic unit. In Figure 1 these
routines are as follows:

— Host record formatter: A routine that converts arbitrary host plaintext data into host records for the
cryptographic unit

— Host record de-formatter:Aroutine that processes host records from the cryptographic unit into host
plaintext data

It is not required for a host to implement these functions. The host needs only to present host records to the
cryptographic unit, and accept host records from a cryptographic unit.

Examples:

— If the cryptographic unit is contained in a tape drive, then the host might be a computer running a
backup application in which the backup application takes arbitrary host plaintext data in the form of
files and consolidates them into backup sets, breaks these backup sets into variable-length blocks, and
sends the blocks as host records to the cryptographic unit.

— If the cryptographic unit is contained in a disk drive, then the host might be an operating system that
formats files into fixed-size sectors (typically 512 B) and uses these sectors as host records when
sending data to and receiving data from the cryptographic unit.

4.2.3 Key manager

The key manager is responsible for the lifecycle (e.g., generation, archiving, and destruction) of the
cryptographic keys used by the cryptographic unit. Such a cryptographic key may be a cipher key or a key
encrypting key (KEK) (see 6.3). The key manager may maintain cryptographic keys within a key archive.
Requirements on the key manager and key archive are outside the scope of this standard, but are critical for the
security of the complete system (see IEEE P1619.3 [B7]).#

4.2.4 Cryptographic unit

A cryptographic unit is any combination of software, firmware, or hardware that is capable of
handling plaintext and ciphertext using at least one of the cryptographic modes specified in 5.1.

The cryptographic unit shall contain the following subcomponents:

— Plaintext record formatter (see 4.3) and/or plaintext record de-formatter (see 4 .4)
— Encryption routine (see 4.5) and/or decryption routine (see 4.6)

— Cryptographic parameters (see 4.7)

#The numbers in brackets correspond to those of the bibliography inAnnexA.

16

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

The cryptographic unit may contain the following subcomponents:

— Random bit generator (see 6.1)
— Key wrapping routine (see 6.4)

— Key unwrapping routine (see 6.4)

4.2.5 Storage medium

The storage medium is any device or material capable of non-volatile storage of encrypted records and
metadata.

The controller may configure the cryptographic unit to write a particular plaintext record to the storage
medium either with encryption or without encryption. The cryptographic unit may mix both encrypted records
and plaintext records on the storage medium. The cryptographic unit may write additional information without
encryption to the storage medium, assuming that such information does not reveal cryptographic keys or
plaintext that was intended to be encrypted. The cryptographic unit shall not write information to the storage
medium that compromises the cryptographic confidentiality or integrity of any encrypted information on the
storage medium.

4.3 Plaintext record formatter

The plaintext record formatter is a routine that converts host records into plaintext records that pass into
the encryption routine. In the simplest case, this routine could simply pass host records directly through as
plaintext records. In more complicated systems, this routine could perform compression, padding, or other
reversible transforms.

The cryptographic unit receives host records from the host as a basic unit of data for encryption. When
performing encryption, the cryptographic unit shall use the plaintext record formatter to format the host
records into plaintext records.

To reduce buffering requirements and latency, the cryptographic unit may define a maximum size for the
plaintext records that is smaller than the maximum host record size allowed by the cryptographic unit. The
plaintext record formatter may split the host record into multiple plaintext records with optional padding or
reformatting.

The cryptographic unit may apply padding or perform reversible transforms (such as compression) to the data
within the host records to form the plaintext records.

If a host record is formed from two or more plaintext records, then the cryptographic unit shall include
sufficient information within the additional authenticated data (AAD), IV, or plaintext record to allow the
plaintext record de-formatter (see 4.4) to unambiguously reconstruct each of the original host records or detect
malicious tampering. To help fulfill this requirement, the cryptographic unit should use ordering verification to
detect tampering or reordering of the encrypted records (see 4.6.3).

Documentation shall describe how the plaintext record formatter generates plaintext records from host records.

4.4 Plaintext record de-formatter

The plaintext record de-formatter is a routine that converts plaintext records received from the decryption
routine into host records that the cryptographic unit passes to the host.

17

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

The plaintext record de-formatter shall only use information that the decryption routine i1s able to
cryptographically verify using a message authentication code (MAC).

If the plaintext record contains padding or reversible transforms, then the plaintext record de-formatter shall
verify the correctness of these formats. If the format is incorrect, then the cryptographic unit shall send the
special signal FAIL to the host and/or controller and should not return any host records.

Documentation shall describe how the plaintext record de-formatter generates host records from plaintext
records.

4.5 Encryption routine
4.5.1 Overview

The encryption routine takes formatted plaintext records as input and produces encrypted records as output.
The following subclauses describe the characteristics of an encryption routine that are common across all
cryptographic modes.

4.5.2 Inputs

The encryption routine requires the following inputs (see 5.1 for limits):

a) Asecretcipher key

b) Aninitialization vector (V)

c) Length of the IV

d) Plaintext record

e) Length of the plaintext record

f) Additional authenticated data (AAD)
g) Length of the AAD

4.5.3 Outputs

The encryption routine produces an encrypted record that contains the following:

a Aciphertext record

(=)

O

)

) A message authentication code (MAC)

) Optionally, the IV or enough information to reconstruct the IV
)

d) Optionally, the AAD or enough information to reconstruct the AAD

The ciphertext record shall have the same length as the plaintext record.An encrypted record may additionally
contain the IV and AAD. If an encrypted record does not contain both the |V and AAD, then there shall be
sufficient information on the storage medium or in the cryptographic unit to allow reconstruction of the
complete |V and AAD. The IV and AAD may contain any other information that does not compromise the
cryptographic confidentiality and integrity of the encrypted record (e.q., information to support ordering
verification as given in 4.6.3).

The cryptographic unit shall write the encrypted record to the storage medium.

18

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

When performing encryption, the cryptographic unit shall not write the plaintext or cipher key to the storage
medium unencrypted. The cryptographic unit may write a cryptographically wrapped version of the cipher
key to the storage medium (see 6.4).

For encryption, the cipher key shall be associated with a single cryptographic mode, and the cryptographic
unit shall not use this cipher key in any other cryptographic mode. The key manager should associate each
cipher key with a single cryptographic mode.

4.6 Decryption routine
4.6.1 Overview

The decryption routine uses a cipher key to convert encrypted records from the storage medium
into plaintext records for the plaintext record de-formatter.

The following subclauses describe the requirements for decryption that are common
among all the cryptographic modes specified in this standard.

4.6.2 Decryption inputs

The decryption routine requires the following inputs:

a) Asecretcipher key

b) Initialization vector (V)

c) Length of the IV

d) Ciphertext record

e) Length of the ciphertext record

f) Additional authenticated data (AAD)

g) Length of the AAD

h) A message authentication code (MAC) with length determined by the cryptographic mode

During decryption, the cryptographic unit shall always validate the MAC. The cryptographic unit should
validate the MAC before sending any plaintext to the host. Best practices recommend validating the MAC
before returning plaintext (see B.4 for a discussion on the security concerns of returning plaintext before
validating the MAC). Documentation shall disclose whether the cryptographic unit validates the MAC before
returning any plaintext.

If the cryptographic unit validates the MAC before returning plaintext, then it shall not return plaintext to
the host if the MAC validation fails. If the MAC validation fails, then the cryptographic unit shall return the
special signal FAIL to the host and/or controller.

If the cryptographic unit returns plaintext to the host before validating the MAC, then the cryptographic unit
shall subsequently validate the MAC. If this MAC validation fails, then the cryptographic unit shall return the
special signal FAIL to the host and/or controller. If this MAC validation passes, then the cryptographic unit
shall return the special signal PASS to the host and/or controller.

If the cryptographic unit is capable of returning plaintext before validating the MAC, then the host

should not act on any plaintext from the cryptographic unit until receiving a complete host record
and the special signal PASS.

19

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

Documentation shall define the special signal FAIL and describe how the host and/or controller receive such a
signal. The special signal FAIL should identify the host records that failed the MAC validation.

If the cryptographic unit is capable of returning plaintext before validating the MAC, then documentation shall
define the special signal PASS, describe how the host and/or controller receive such a signal, and define limits
for the number of host records and bytes of plaintext that the cryptographic may return before checking the
MAC.

4.6.3 Ordering verification

During decryption, a cryptographic unit should performing ordering verification by checking that each IV or
AAD is consistent with the preceding IV or AAD based on the documented mechanism used for creating the
IV or AAD (see B.3).

If a cryptographic unit is performing ordering verification and detects an inconsistent IV or AAD,
then the cryptographic unit shall return the special signal FAIL to the host and/or controller.

If a cryptographic unit supports ordering verification, then documentation shall specify the methods for
enabling or disabling this functionality, and shall specify how the cryptographic unit notifies the host and/or
controller of inconsistent |V or AAD ordering, and how to recover, if possible.

4.6.4 Verification-only mode

The cryptographic unit may support a verification-only mode, where it only validates the MAC and
returns a PASS or FAIL signal to the host and/or controller, but does not return any host records.

4.7 Cryptographic parameters

A cryptographic parameter is a value that affects the cryptographic confidentiality or integrity of
encrypted information.

The cryptographic unit shall protect the following cryptographic parameters from unauthorized
modification while stored in the cryptographic unit, but may permit disclosure:

— Additional authenticated data (AAD)
— Initialization vector (1V)

— Any asymmetric public key [e.g., asymmetric public key encrypting key (KEK)]

Additionally, the cryptographic unit shall protect the following cryptographic parameters
from both unauthorized modification and disclosure:

— Cipher keys
— Seed keys for random bit generators
— Any asymmetric private key (e.g., asymmetric private KEK)

— Any symmetric KEK

The cryptographic unit may disclose cryptographic parameters to authorized entities if such disclosure uses
cryptographic methods or uses a physically secure connection.

Documentation shall describe all cryptographic parameters used by the cryptographic unit.

20

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

5. Cryptographic modes
5.1 Overview

This clause describes the cryptographic modes of operation (i.e., cryptographic modes) allowed by this
standard when the cryptographic unit is operating in a compliant mode. The cryptographic unit shall support at
least one of the cryptographic modes shown in Table 1.

Table 1—Cryptographic modes

Family Fully qualified name Description Ref.
CCM CCM-128-AES-256 Counter with 128-b cipher block chaining MAC 5
GCM GCM-128-AES-256 Galois/Counter Mode with 128-b MAC 5.
CBC-HMAC CBC-AES-256-HMAC-SHA-1 Cipher block chaining with 160-b HMAC Sj

CBC-AES-256-HMAC-SHA-256 Cipher block chaining with 256-b HMAC 5.4

CBC-AES-256-HMAC-SHA-512 Cipher block chaining with 512-b HMAC 5.4
XTS-HMAC XTS-AES-256-HMAC-SHA-512 Xor-encrypt-xor with tweak and 5.5
ciphertext

stealing, with 5TZ-b HMACT

When describing the encryption and decryption routines independently, this standard uses the
suffix “-ENC” to denote the encryption routine, and “"DEC” to denote the decryption routine. For example,
"‘CCM-128-AES-256-ENC” refers to the encryption routine implementing the CCM-128-AES-256

cryptographic mode.

The cryptographic unit shall operate these cryptographic modes within the parameter limits given in Table 2.

[able Z—Farameter limits for encryption modes
Parameter limits, in bytes
Cryptographic mode Cipher IV AAD Plaintext Maximum MAC
key record total
plaintexte
CCM-128-AES-256 32 12 O to 254 -1 Oto 224 -1 264 — 1 16
GCM-128-AES-256 32 12, 0to 2811 0 to 236 — 32 268 — 16
or 16
16 to 261 -1
-CBE-AES-256-HMAEC-52¢ 16 0 to 264 — 4 in0 to 264 — 16 inF2—1 20
SHA-1 multiples of 4 | multiples of 16
-CBC-AES-256-HMAC—64+ 16 P4y
SHA-256 32
-CBE-AES-256-HMAC-96= 16 26+—1
SHA-512 64
HTFS—AES256~HMAC—128+ 16 o2t 26—Oor—t6-to——26—4 64
SHA-512 268

—1

alncludes bothAES key and MAC key.
sApplies to all data encrypted during the lifetime of a particular cipher key.

All lengths shall be an integer number of bytes (i.e., multiples of 8 b).

Acryptographicunitmayimposeparameterlimitsthataremorerestrictivethanthosein Table 2. Documentation
shall specify the parameter limits for the cryptographic unit, if different from those in Table 2.

21

IEEE Std 1619.1-2018
|IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

5.2 Counter with cipher block chaining-message authentication code (CCM)

A cryptographic unit that supports the CCM-128-AES-256 cryptographic mode shall use the
algorithm specified by NIST Special Publication 800-38C (NIST SP 800-38C) with the following

specifications:

a) The block cipher algorithm shall be AES with a 256-b (32-B) cipher key (see NIST FIPS 197).

b) The counter generation function shall be as specified in Appendix A of NIST SP 800-38C.

c) The formatting function shall be as specified in Appendix A of NIST SP 800-38C.

d) The MAC length (Tlen) shall be 128 b (16 B).

e) ThelVlength shallbe 96 b (12 B). The |V input to the encryption procedure corresponds to the nonce

N required by CCM (see NIST SP 800-38C).

f) The cryptographic unit may return plaintext to the host before validating the MAC, as described in
4.6.2.

g) The IV computation shall follow requirements from 6.5.

NOTE—The IV used for the CBC-MAC computation of CCM does not correspond to the CBC-IV used in CBC-HMAC
(see 5.4), even though the names are similar. The CBC-MAC portion of CCM uses a “CBC-IV" of all zeros, as compared
to CBC-HMAC, which uses a unique CBC-IV for each invocation.

The data length shall be represented using 24 b (3 B), which is parameterized by setting t = 16,
and q = 3 (see A.2.1 within NIST SP 800-38C). Table 3 shows the format of block Bo.

I able s—Formatting ot Bo
Byie number. U T... 12 13...T5

Value: Oy TTTOTO: itialization Vector (1V) Byte-tength of praintext

In Table 3, the variable y shall equal a binary '0" if the AAD length is zero and a binary '1" if the AAD
length is non-zero. For example, the first byte of Bo has the binary value 001110102 if there is no
AAD and 01111010z if there is AAD.

The Flags field within the counter blocks shall contain the binary value 000000102 (see A.3 within
NIST SP 800-38C).All other parameters shall be as specified in Appendix A of NIST SP 800-38C.

NOTE—NIST SP800-38C does not allow any plaintext to be returned if the MAC validation fails. This standard
allows an exception to this case as described in 4.6.2,

5.3 Galois/Counter Mode (GCM)

A cryptographic unit that supports the GCM-128-AES-256 cryptographic mode shall use the GCM
algorithm specified in McGrew and Viega's The Galois/Counter Mode of Operation, with the
following parameters:

a) The block cipher algorithm shall be AES with a 256-b (32-B) cipher key (see NIST FIPS 197).

b) The MAC length shall be 128 b (16 B). The MAC shall be used as the Tag defined in the GCM
algorithm.

c) The IV computation shall follow requirements from 6.5.

d) The cryptographic unit may return plaintext to the host before validating the MAC, as described
in4.6.2.

22

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

e) Thelength of the IV shall be either 12 B, or between 16 B and 25" — 1, inclusive.

NOTE 1—The document entitled “The Galois/Counter Mode of Operation™ by Mcgrew and Viega does not allow any
plaintext to be returned if the MAC validation fails. This standard makes an exception for this case as described in 4.6.2.

NOTE 2—Using an IV with more than 128 b (16 B) does not add more security because a long IV is distilled
back to 16 B before use.

5.4 Cipher block chaining with keyed-hash message authentication code (CBC-
HMAC)

A cryptographic unit that supports a cryptographic mode within the CBC-HMAC family shall use the CBC
mode specified by NIST Special Publication 800-38A (NIST SP 800-38A) and HMAC as specified in NIST
FIPS 198, with the following specifications:

a) The block cipher algorithm shall be AES with a 256-b (32-B)AES key (see NIST FIPS 197).
b) The HMAC shall use one of the following hashing functions (see NIST FIPS 180-2):

1) SHA-1
2) SHA-256
3) SHA-512

c) The MAC length (i.e., Tlen) shall match the output length of the underlying hash function [e.g., 160 b
(20 B) for SHA-1, 256 b (32 B) for SHA-256, or 512 b (64 B) for SHA-512].

d) The MAC key length shall be equal to the MAC length (i.e., Tlen).
e) The plaintext record length shall be a multiple of 16 B (see 4.3 for a discussion on padding).
fy The AAD length shall be a multiple of 4 B.

g) The cryptographic unit shall compute Vs, called CBC-IVs in the case of CBC-HMAC, according to
one of the following methods:

1) Setthe CBC-IVto arandom IV (see 6.5.2); or

2) Set the CBC-IV to the result of encrypting a nonce IV (see 6.5.3) with the AES block cipher,
using the AES key (see NIST SP 800-38A,Appendix C).

h) The CBC-IV length shall be 128 b (16 B).
1) The cryptographic unit may return plaintext to the host before validating the MAC (see 4.6.2).

NOTE—Even though the plaintext record is required to be a multiple of 16 B, the host record may be any
size if the plaintext record formatter of the cryptographic unit provides padding to produce plaintext records
that are a multiple of

16 B.

For CBC-HMAC, the cryptographic unit shall compute HMAC over the concatenation of the AAD, CBC-IV,
and ciphertext record. If the AAD has variable-length, then there shall be sufficient information within the
AAD to allow the decryption routine to unambiguously determine where theAAD ends and the CBC-IV starts.

If the cryptographic unit supports CBC-HMAC, then documentation shall describe the format of the AAD,
and the method used to determine where the AAD ends and the CBC-IV starts. During decryption, the
cryptographic unit shall use this method to determine where the AAD ends and shall send the special signal
FAIL to the host and/or controller if the AAD does not adhere to the documented format.

23

|IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

NOTE—It is possible to fulfill the previous requirement by including the length of the AAD within a fixed-length

field at the beginning of the AAD.

For CBC-HMAC, the cipher key length shall be 416 b when using CBC-AES-256-HMAC-SHA-1, 512 b
when using CBC-AES-256-HMAC-SHA-256, and 768 b when using CBC-AES-256-HMAC-SHA-512. The
cryptographic unit shall use the first 256 b of the cipher key as the AES key in the encryption and decryption
routines. The cryptographic unit shall use the remaining b of the cipher key as the HMAC key in the MAC

generation and verification routines.

Figure 2 shows the CBC-AES-256-HMAC-SHAencryption routine.

AAD
Random IV Nonce IV Plaintext Record Cipher Key

CBC-AES-256-

HMAC-SHA-ENC X
A 4

AES-256- le / AES / HMAC

ENC / Key Key

/

{ Select L 4

.| CBC-AES-256-ENC| |«

! ! I
/ AAD /CBC-I‘U’/ Ciphertext Record /

J

I

i T

: » |HMAC-SHA| |4—
:

I

————————— -p———t—'—-—— '

;” AAD 7 CBC-W/ Ciphertext Record / MAC /
1 ’

v

Encrypted Record

Legend: Data Flow

d
/ Data / Operation \Chﬂi.:e / Optional Feature

Figure 2—Depiction of CBC-AES-256 HMAC-SHA encryption routine

24

¥

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

In Figure 2, the dotted lines around the "AAD" and "CBC-IV" boxes indicate that it is optional to include these
fields within an encrypted record if there i1s enough information elsewhere to reconstruct the AAD and CBC-
IV for the decryption routine.

NOTE—Even though the 'Select’ box in Figure 2 shows two possible inputs, a particular
implementation that supports CBC-HMAC is only required to support one of these choices.

5.5 Xor-encrypt-xor with tweakable block-cipher with keyed-hash message
authentication code (XTS-HMAC)

Acryptographic unit that implements a cryptographic mode within the XTS-HMAC family shall use the XTS-
AES-256 procedure as specified in IEEE Std 1619 for confidentiality, and HMAC-SHA-512 as specified by
NIST FIPS 198 and NIST FIPS 180-2 to generate the MAC, with the following specifications:

a) The cipher key length shall be 1024 b (128 B), consisting of the concatenation of the following parts,
in order:

1) AnAES key that is 512 b (64 B) in length, used as input into the XTS-AES-256 procedure (see
IEEE Std 1619).

2) An HMAC key thatis 512 b (64 B) in length, used as input into the HMAC-SHA-512 procedure.

b) The cryptographic unit shall compute IVs according to 6.5. The |V is used as the tweak specified in
IEEE Std 1619.

c) ThelVlengthshallbe 128 b (16 B).
d) The resulting MAC shall be 512 b (64 B) in length.

For XTS-HMAC, the cryptographic unit shall compute the HMAC over the concatenation of the AAD, tweak,
and ciphertext record. If the AAD has variable-length, then there shall be sufficient information within the
AAD to allow the decryption routine to unambiguously determine where the AAD ends and the tweak starts.

If the cryptographic unit supports XTS-HMAC, then documentation shall describe the format of theAAD, and
the method used to determine where the AAD ends and the tweak starts. During decryption, the cryptographic
unit shall use this method to determine where the AAD ends and shall send the special signal FAIL to the host
and/or controller if the AAD does not adhere to the documented format.

NOTE 1—It is possible to fulfill the previous requirement by including the length of the AAD within a fixed-
length field at the beginning of the AAD.

NOTE 2—Even though the plaintext record is required to be at least 16 B long, the host record may be smaller
if the plaintext formatter of the cryptographic unit provides padding.

Figure 3 shows the XTS-AES-256 encryption routine.

25

|IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

AAD Tweak Plaintext Record Cipher Key

XTS-AES-256-
HMAC-SHA-ENC
N
AES HMAC
Key Key

Y
P | XTS-AES-256-ENC | |«

! !
/ Tweak / Ciphertext Record /

J

i
i
: » |HMAC-SHA | |¢—
:
‘ I
B 2 2 -
/s AAD / Tweak / Ciphertext Record / MAC /
J
Y

3]

-

QR e it e

v
Encrypted Record

Legend: Data Flow

' >
/ Data / Operation Optional Feature

Figure 3—Depiction of an XTS-AES-256 encryption routine

6. Cryptographic key management and initialization vector requirements

6.1 Random bit generator

If a cryptographic unit needs random data, then the cryptographic unit shall use a cryptographically-sound

random-bit generator (RBG) to generate this random data. In particular, the RBG shall be designed such that it
Is not computationally feasible to predict subsequent outputs from the RBG based on knowledge of previous

outputs from the RBG or unencrypted information passed into the cryptographic unit.

Acryptographic unit should implement an RBG that is compatible with NIST FIPS 140-2 [B14] or comparable

standards. For implementation guidance describing suitable RBGs, see ANSI X9.31:1998 [B1], ISO/IEC
18031 [B10], Keller [B12], and NIST SP 800-90 [B18].

26

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

Documentation shall describe the RBG employed by the cryptographic unit, including algorithms and
descriptions of sources of randomness.

6.2 Cryptographic key entry and export

A cryptographic unit should receive cryptographic keys from the key manager using a secure
method (e.g., physically secure interface, cryptographically protected communications).

A cryptographic unit shall not make plaintext cryptographic keys available, except to authorized entities that
use a physically secure port. A cryptographic unit may make encrypted (i.e., wrapped) cryptographic keys
available externally.

The key manager should refrain from entering the same cipher key into both a compliant cryptographic unit
and a non-compliant cryptographic unit for purposes of encryption. In this situation, it is possible for the non-
compliant cryptographic unit to compromise the security of the data (e.g., the non-compliant cryptographic
unit may use the same sequence of |Vs as the compliant cryptographic unit).

If the cryptographic unit supports cryptographic key entry or export, then documentation shall specify the
supported cryptographic key entry and export methods.

6.3 Handling the cipher key

The cryptographic unit shall use one or more of the following methods to create the cipher key:

a) Generate a new cipher key using only the output from an RBG and perform the following actions:
1) Create a wrapped cipher key using a KEK from the key manager; and then
2) Archive the wrapped cipher key using one or more of the following actions:
i) Store the wrapped cipher key on the storage medium; and/or
ii) Exportthe wrapped cipher key to the key manager.

b) Use a cipher key from the key manager and include random information within the IV, as specified in
6.5.20r6.5.3.3.

c) Use acipher key from the key manager and use unigue Vs within a self-contained group as specified
in 6.6.

The cryptographic unit may use key wrapping, as specified in 6.4, in conjunction with any of the
items in the previous list.

NOTE—The controller needs to be especially careful when configuring the cryptographic unit to use a cipher key from
the key manager. In this case, it is important for the key manager to frequently generate new cipher keys because the risk
of information leakage increases with the square of the amount of plaintext encrypted under the same cipher key (see B.7
and B.8).

6.4 Cryptographic key wrapping on the storage medium

Key wrapping is the process of using a key encrypting key (KEK) to encrypt another cryptographic key
(e.g., cipher key) using a key wrapping routine. Key unwrapping is the process of using a KEK to decrypt a
previously wrapped cryptographic key. If the same KEK is used for both wrapping and unwrapping, then it is
a symmetric KEK. If a different KEK is used for wrapping and unwrapping, then an asymmetric public KEK

performs the wrapping and an asymmetric private KEK performs the unwrapping.

27

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

Examples of key wrapping routines are as follows:

— NISTAES key wrap [B13] with a symmetric KEK

— RSAES-OAEP(see RSAPKCS #1 v2.1 [B19]) with an RSApublic key as the asymmetric public KEK
for encryption and an RSAprivate key as the asymmetric private KEK for decryption

— ECIES (see IEEE Std 1363a~-2004 [B6]) with an elliptic curve public key as the asymmetric public
KEK for encryption and an elliptic curve private key as the asymmetric private KEK for decryption

Support of key wrapping is optional. The cryptographic unit may use any key wrapping routine for protecting
the cipher key during import or export, or for archival within the storage medium or key manager. The
cryptographic unit should only use key wrapping routines that have undergone peer review within the
cryptographic community, such as those listed above.

When unwrapping a wrapped cipher key that was wrapped with an asymmetric public KEK, the key manager
should not pass an asymmetric private KEK to the cryptographic unit. Instead, the key manager should retrieve
the wrapped cipher key, use its asymmetric private KEK to unwrap it, and then pass the cipher key to the

cryptographic unit using a secure method.

If the cryptographic unit supports key wrapping, then documentation shall describe all key wrapping
routines that the cryptographic unit supports.

NOTE—The strength of the KEK may affect the strength of the overall solution. See B.2 for a discussion
on security concerns of the KEK.

6.5 Initialization vector (V) requirements
6.5.1 Overview

Encrypting each plaintext record requires a cipher key and an IV, and using the same combination of cipher
key and IV to encrypt more than one plaintext record introduces security vulnerabilities (see B.6). To reduce
the chances of using the same combination of cipher key and IV to encrypt more than one plaintext record, the
cryptographic unit shall generate the IVs according to one of the following methods:

— Random IV: For each encrypted record, the cryptographic unit generates a new |V that consists
entirely of the output from an RBG (see 6.5.2).

— Nonce IV: Use encryption sessions, according to 6.5.3.

6.5.2 Using random IVs

A cryptographic unit may generate a random IV as input into each encrypted record. Such a random |V shall
entirely consist of the output from an RBG.

6.5.3 Encryption sessions
6.5.3.1 Overview

An encryption session is an interval in which one or more cryptographic units maintain a consistent sequence
of Vs for encrypting plaintext records.

A cryptographic unit may maintain multiple independent encryption sessions simultaneously in
which each independent encryption session uses a different cipher key and independent |Vs.

28

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

6.5.3.2 Beginning of an encryption session

Before starting an encryption session, the controller shall configure the cryptographic unit to use a
particular method for creating or retrieving the cipher key, according to 6.3.

An encryption session shall begin only after one of the following events:

— The cryptographic unit receives a cipher key from the key manager.

— The cryptographic unit generates a new cipher key.

6.5.3.3 Encryption session IV requirements

The cryptographic unit shall encrypt each plaintext record with an IV that is unique within the
encryption session. This requirement prevents plaintext leakage within an encryption session (see
B.6).

When starting an encryption session, the cryptographic unit shall set the IV to an initial value. If the

cryptographic unit uses a cipher key from the key manager (see 6.3), then the initial value for the IV shall
contain at least 64 b that are derived from an RBG. This initial value may continue from the last IV of the

previous encryption session if the last |V is part of a consistent sequence that originally started from an initial
value containing at least 64 random bits.

Documentation shall describe the format of the IV and the cryptographic unit's mechanism for generating
each IV.

6.5.3.4 End of an encryption session

An encryption session shall end after one of the following events:

— The cryptographic unit receives a command from the controller to end an encryption session. Support
of such a command is optional.

— The cryptographic unit loses the encryption session state, including the cipher key and IV. In this case,
the cryptographic unit should notify the host.

— The cryptographic unit is unable to create an IV that is unique within the encryption session. In this
case, the cryptographic unit should send the special signal FAIL to the host and/or controller.

If a cryptographic unit is encrypting data in encryption sessions and the encryption session ends, then the
cryptographic unit shall not encrypt any more data until another encryption session starts.

If the cryptographic unit supports a command that ends an encryption session, then documentation shall
describe this command.

6.6 Creating unique IVs within a self-contained group

This subclause defines requirements for creating unigue Vs within a self-contained group of cryptographic
units. Support of these requirements is mandatory for cryptographic units that support item c) of 6.3, and
optional otherwise.

When creating unique Vs within a self-contained group, the following statements apply:

a) Cryptographic units may share a common cipher key.

29

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

Compliance to this standard shall only apply to the entire self-contained group, not an individual
cryptographic unit within the group.

All cryptographic units within the self-contained group shall be configured to coordinate the creation
of unique IVs.

Cryptographic units shall not share cipher keys with any cryptographic unit that is not a member
of the self-contained group unless such a non-member of the self-contained group includes random
information within the IV as defined in item b) of 6.3.

Cryptographic units shall only be used with external services that ensure and document compliance
with statement d).

Documentation shall describe how the system prevents reuse of the same IV between any two
cryptographic units within the self-contained group and how the cryptographic units are uniquely
identified. Such identification should use cryptographic methods.

30

IEEE Std 1619.1-2018
|IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

Annex A

(informative)

Bibliography

Bibliographical references are resources that provide additional or helpful material but do not
need to be understood or used to implement this standard. Reference to these resources is
made for informational use

only.

[B1] ANSI X9.31:1998, Digital Signatures Using Reversible Public Key Cryptography for the Financial
Services Industry (rDSA), 1998.°

[B2] Biham, E., New Types of Cryptanalytic Attacks Using Related Keys, Advances In
Cryptology— EUROCRYPT'93, Springer-Verlag, 1994, pp. 398-409, http://dx.doi.org/10.1007/3-
540-48285-7_34.

[B3] Canetti, R., S. Halevi, and M. Steiner, "Mitigating Dictionary Attacks on Password-Protected Local
Storage.” Advances in Cryptology—CRYPTO '06. LNCS, Vol. 4117. Springer-Verlag, 2006, pp. 160-179,
available from http://eprint.iacr.org/2006/276.

[B4] ECRYPT IST-2002-507932 D.SPA.16, ECRYPT Yearly Report onAlgorithms and Keysizes (2005), Jan
2006.

[B5] Ferguson, N.,Authentication weaknesses in GCM, available from http://csrc.nist.gov/groups/ST/toolkit/
BCM/documents/comments/CWC-GCM/Ferguson2.pdf.

[B6] IEEE Std 1363a™-2004, IEEE Standard Specifications for Public-Key Cryptography
Amendment 1: Additional Techniques.™."

[B7]IEEE P1619.3 (Draft 1, May 2007), Draft Standard for Key Management Infrastructure for Cryptographic
Protection of Stored Data. 2

[B8] IETF RFC 2898, PKCS #5: Password-Based Cryptography Specification Version 2.0.,
available from http://www.ietf.org/rfc/rfc2898.txt, September 2000.'*

[BO]IETF RFC 3766, Determining Strengths for Public Keys Used for Exchanging Symmetric Keys, available
from http://www.ietf.org/rfc/rfc3766.txt,April 2004.

[B10] ISO/IEC 18031, Information Technology—Security technigues—Random bit generation, November
2005.

[B11] Joux, A., Authentication Failures in NIST version of GCM, available from http://csrc.nist.gov/groups/
ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments. pdf.

*ANSI publications are available from theAmerican National Standards Institute (http://www.ansi.org/).

“The |IEEE standards or products referred to inAnnex Aare trademarks owned by the Institute of Electrical and Electronics Engineers,
Incorporated.

"|EEE publications are available from the Institute of Electrical and Electronics Engineers (http://standards.ieee.org/).

ZNumbers preceded by P are |EEE authorized standards projects that were not approved by the IEEE-SAStandards Board at the time
this publication went to press. For information about obtaining drafts, contact the IEEE.

*|ETF publications are available from the Internet Engineering Task Force (http://iwww.ietf.org/).

14150 publications are available from the International Organization for Standardization (http://fwww.iso.org/) and theAmerican

National Standards Institute (http://www.ansi.org/).

31

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

[B12] Keller, S. S., NIST-Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4
Using the 3-Key Triple DES andAESAIlgorithms, January 2005.

[B13] NISTAES Key Wrap Specification, November 2001.75

[B14] NIST FIPS 140-2, Federal Information Processing Standard 140-2, Announcing the Standard for
Security Requirements for Cryptographic Modules.™

[B15] NIST Draft Special Publication 800-38D (June 27, 2007), Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (GCM) and GMAC.

[B16] NIST Special Publication 800-57, Recommendation for Key Management—Part 1: General (Revised),
May 2006.

[B17] NIST Special Publication 800-63, Electronic Authentication Guideline: Recommendations of the
National Institute of Standards and Technology,April 2006.

[B18] NIST Special Publication 800-90, Recommendation for Random Number Generation Using
Deterministic Random Bit Generators.

[B19] RSAPKCS #1 v2.1: RSACryptography Standard, June 2002.

SMNIST publications are available from the National Institute of Standards and Technology (http://www.nist.gov/).
5F|PS publications are available from the National Technical Information Service, U. S. Department of Commerce
(http:/fiwww.ntis.org/).

32

IEEE Std 1619.1-2018
|IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

Annex B

(informative)

Security concerns

B.1 Threat model

This standard is meant to protect stored data in settings where an attacker might have full access to the storage
medium: It is assumed that the attacker might be able to read the content of the storage medium and can also
write to it, including replacing some of the stored data with arbitrary data of the attacker’'s choosing. It is also
assumed that the attacker might have access to very large amounts of encrypted data. Such a threat model
is suitable for situations where the storage medium is not tightly bound to the cryptographic unit. A prime
example is tape encryption, where it is expected that encrypted cartridges are routinely accessed separately
from the tape drive where they were first written.

Furthermore, this standard is meant to offer some protection even in highly adversarial situations where an
attacker can have repeated access to the storage media of a live system, and can monitor or modify the storage
as it is repeatedly being written and over-written. However, only limited protection is provided against replay
attacks (see B.3).

Beyond watching and modifying ciphertext, the attacker may have some known- or chosen-plaintext
capabilities. This means that the attacker may have some a priori knowledge of the plaintext corresponding
to ciphertext that is written on the storage medium, and it may even be able to influence the host into writing
plaintext records containing text of the attacker’'s choosing. This is a realistic assumption when the host
represents a multi-user system and some of these users are not highly trusted, and can be realistic even in
single-user cases (e.qg., when the content of a web cache is written to encrypted disk).

On the other hand, this threat model does not cover security of the information in transit (i.e., how
the cryptographic unit receives and sends data to be securely stored). It also does not cover most aspects
of key management, such as the generation, transfer, and secure storage of the keys (and does not address
mismanagement of keys such as using a cryptographic transformation to encrypt its own key). Many of these
aspects are addressed by other standards. Finally, a variety of physical (side-channel) attacks against the
cryptographic unit, such as timing, power, radiation, fault injection, and the design of a secure random-bit
generator (RBG) are out of scope.

B.2 Maintaining cryptographic key security

The security of a cryptographic unit depends on high-quality cryptographic keys. Ideally, the cryptographic
keys should come from a cryptographically-sound random-bit generator. The user should not use sources
that lack randomness, such as passwords, for any cryptographic key. It is relatively easy for an attacker to
launch an off-line dictionary attack against passwords. NIST provides guidelines that estimate the amount of
randomness within common passwords (see NIST SP 800-63 [B17]). See also Canetti, Halevi, and Steiner
(B3], and IETF RFC 2898 [BS].

The effective strength of the solution is determined by many factors, including the strength of the cipher key,
the wrapping keys, and keys that are used for ensuring communication security, as well as many aspects of
secure authorization. See ECRYPT IST-2002-507932 [B4], IETF RFC 3766 [B9], and NIST SP 800-57 [B16]
for different estimates of equivalent key sizes between symmetric key and various asymmetric key encryption
algorithms.

33

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

B.3 Replay attacks

An implementer should keep the encrypted records in proper logical sequence on a particular storage medium.
Otherwise, the cryptographic unit is vulnerable to a replay attack, where the attacker replaces a record on the
media with some other properly-authenticated record (such as a prior version of the current record).

The attack is applicable in environments where the attacker can read and write directly to the storage medium,
and can reorder or repeat encrypted records, assuming the cryptographic unit does not validate the ordering.
This could be a powerful attack if the adversary has extensive knowledge of the plaintext and wishes to change
the contents of a backup set by replacing specific records with other records, all encrypted with the same

cipher key.

Many network encryption standards, such as IPsec, use sequence numbers to handle replay attacks. Similarly,
a cryptographic unit should keep the records in sequential order. This could be simply accomplished by
including the sequential record number within the AAD or |V fields.

Maintaining a sequential record number helps, but does not handle the case of append operations that overwrite
previous data. The addition of a write-pass counter helps ensure that the data has both the correct record
number and was written in the correct sequence. Otherwise, an attacker could replay records from either a
different tape or a previous write pass of the current tape. A validated write-pass count would prevent this
attack.

Unfortunately, including the record number and write-pass count within the AAD or |V field would make it
hard, if not impossible, to perform a direct copy of the raw encrypted data from one tape to another. Transferring
encrypted data would only be possible by performing an entire tape copy.

Ordering verification does not seem to be applicable in environments where the host has random-access to
the storage, such as in a hard drive. Protecting against replay attacks in these environments shall therefore be
done by other means, such as controlling the access to the media when possible, or relying on a higher-level
application. This is beyond the scope of this standard.

Some level of operational protection against replay attacks might be provided by not allowing direct read and
write (raw) of encrypted records on the storage medium. This increases the difficulty for attackers by depriving
them of ready-made tools to use in these attacks, instead forcing them to implement their own tools. It is clear,
however, that this operational protection is only effective against casual attackers. Determined, well-financed
attackers can always build their own tools.

B.4 Passing plaintext to the host before checking the MAC

This standard makes an allowance for cryptographic units to pass plaintext to the host before checking
the message authentication code (MAC). The purpose is to allow implementations to be compliant even if
they are unable to store an entire decrypted host record before passing it back to the host. However, such
implementations might have difficulty in gaining certifications such as FIPS 140-2 [B14]. Additionally, both
NIST SP 800-38C and NIST SP 800-38D [B15] require that the device validate the MAC before returning any
plaintext.

Because of this allowance, it is important that the host does not act on any decrypted plaintext before the MAC
validation finishes. Data encrypted using CTR (counter) mode (e.g., GCM, CCM) is especially malleable to an
attacker because flipped bits in the ciphertext directly flip corresponding bits in the plaintext. It is also easy to
modify any cyclic redundancy check (CRC) embedded within the plaintext because CRC residuals are linear
and depend only on the other modified bits within the ciphertext. If the attacker has knowledge of the plaintext,
it is easy to make arbitrary changes to compromise the data. CBC is significantly less vulnerable and XTS is
not vulnerable to this attack.

34

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

The cryptographic unit may provide operational protection against casual attackers by not
implementing commands that allow direct (raw) read and write of encrypted records on the storage
medium (see B.3).

B.5 Checking for integrity of a cryptographic key

Use of a corrupted cipher key by the cryptographic unit might lead to wasted resources, and might even open
an exposure to related-key attacks (see Biham [B2]). For example, when using one of the HMAC modes in
this standard (see 5.4 and 5.5), a cipher key in which only some of the first 256 b are corrupted would cause an
encrypted record to pass the MAC-check but still be decrypted to something other than the original plaintext
record.

To avoid using corrupted keys, some measures should be taken to verify the integrity of the cipher key in
use. One method for ensuring key integrity i1s using a “key signature.” For example, this could be an HMAC
computed over the cipher key using some higher-level key. For further guidance, see NIST SP 800-57 [B16].

B.6 Avoiding collisions of initialization vectors

All the modes that are specified in this standard rely on an initialization vector (IV) that is assumed to be non-
repeating within the scope of the cipher key in use. In all of them, using the same combination of cipher key
and IV to encrypt two different records (referred to as an IV-collision) result in some exposure to attacks and
leaks information about the plaintext.

This exposure is particularly acute in modes such as CCM and GCM that use counter-mode encryption (i.e., a
block cipher turned into a stream cipher). In these modes, re-use of the same IV under the same cipher key poses
the same risk as re-use of the key stream in a stream cipher—namely, the exclusive-OR of the two ciphertext
records equals to the XOR of the two plaintext records, allowing an attacker to learn information about the
plaintext records by observing the ciphertext. Moreover, an IV collision in GCM might in some circumstances
reveal information about the authentication key (which is generated internal to the GCM algorithm) to an
attacker, thus allowing the attacker to forge authentication tags (see Ferguson [B5] and Joux [B11]).

This exposure is less acute in the other two modes (CBC and XTS), but it exists even there. For example,

an |V collision lets the attacker see if two encrypted records are the same, or even If some specific blocks in

these records are the same. To maintain the security of the encryption modes in this standard, it is therefore
important to takes proactive steps to avoid IV collisions.

When considering the probability of IV collisions, it is important to take into account the possibility that the
same cipher key Is loaded into cryptographic units from different manufacturers, and that these cryptographic
units may use very different strategies for IV collision avoidance. Therefore, it is important that each
cryptographic unit guarantees some level of IV collision security, regardless of the behavior of any other
cryptographic units that may be given the same cipher key, or there i1s a guarantee that the key manager and
cryptographic unit maintains a consistent state between the cipher key and |V (see 6.5).

Some examples of IV collision avoidance strategies are described in B.7, along with analysis of their
effectiveness in various settings.

35

IEEE Std 1619.1-2018
|IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

B.7 Examples of IV collision avoidance strategies

B.7.1 Example 1: Using random IVs

In this example, the cryptographic unit receives a cipher key from the key manager, to be used with some
cryptographic mode that employs n-bit IVs. With each encrypted record, the cryptographic unit extracts n bits
from its RBG for use as the record’s IV.

To analyze the effectiveness of this strategy, one can observe that any two IVs assume the same value with
probability exactly 2 (because all the IVs are random). When encrypting c records with the same cipher
key, there are c(c- 1)/2 (i.e., c choose 2) possible collision events, each occurring with probability 2. Using
Boole's inequality (the union bound), one can derive the upper-bound on the probability of IV collisions given

in Equation (B.1):

pscCc— <-C

(1 -
21 2

m+ n+

1 (B.1)

where

p Isthe probability of any |V collision occuring

¢ isthe number of records encrypted under a particular cipher key
n Isthe IV length, measured in bits

For example, when using a 128-b IV and encrypting 24° (about 10'¢) records under the same cipher key, the
probability of an |V collision is bounded by p < (240)2 / 2128+1 = 249 (gbout 1 in 5.63 x 10'). When encrypting
the same 240 records with 96-b |Vs, the bound on the IV collision probability from Equation (1) is: p < (24%)2/
296+1=2-17(1in 131072).

The bound from Equation (B.1) is rather tight in this case. In fact, a slightly more complicated argument (using
the inclusior-exclusion principle and the fact that these collision events are pair-wise independent) implies an
almost matching lower-bound on the probability of collisions in this case, given by Equation (B.2):

pzg(l-g+ -n-)
2 (B.2)
2

gis=c(c—-1)
2 1

n+

In the example from above with 128-b 1Vs and 240 records, this lower-bound on the collision probability is
p > 2-49.000000000001314 (stijll about 1 in 5.63 x 1014), and in the example with 96-b IVs and 240 records the lower

bound is p > 2-17.0000055 (1 jn 131072.5).

B.7.2 Example 2: Incrementing a random IV

In this example, the cryptographic unit again receives from the key manager a cipher key with some
cryptographic mode that employs n-bit IVs. Upon receiving the key from the key manager, the cryptographic
unit extracts n bits from its RBG and stores these bits in a state register. With each encrypted record, the
cryptographic unit uses the current contents of the state register as the |V and then increments, modulo 2n, the

state register by one.

The effectiveness of this strategy relies to a large extent on the key manager. For example, a key manager
that never reloads the same cipher key in two different encryption sessions effectively guarantees that V-
collisions never occur with this strategy. On the other hand, a “worst-case key manager” that always reloads

36

IEEE Std 1619.1-2018
|IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

the same cipher key for encryption of every record would cause |V collisions with the same
probability as in the random-IV example from B.7.1.

To get a more quantitative answer, one can observe that any two Vs still only assume the same value with
probability no more than 2. two |Vs either belong to the same sequence, in which case they cannot possibly
collide (assuming that no sequence is longer than 2" records), or belong to two different sequences, in which
case they are derived from independent outputs of the RBG and can only collide with probability 2. Hence
Equation (B.1) can still be used to obtain an upper-bound on the probability of IV collisions.

In the current example, the expression from Equation (B.1) is a very conservative upper bound that holds
regardless of the behavior of the key manager, and the actual collision probability can sometimes be much
smaller. For example, assume that the same cipher key is used in only S encryption sessions, and that each
encryption session encrypts R different records (so the total number of records is R x S). Notice that for any
two encryption sessions, the probability of an IV collision between any Vs in these two encryption sessions is
(2R -1)/2r< R/2™1, since the initial nonces in these two encryption sessions shall be within R - 1 of each other
for any collision to occur. As there are S encryption sessions, one can again use Boole's inequality to upper-
bound the probability that any two of them give rise to collisions, as shown in Equation (B.3):

p< S S- R S R (B.3)
(1 2

where

p isthe probability of any IV collision occuring

S is the number of encryption sessions under a particular cipher key
R Is the number of records that are encrypted in every encryption session
n isthe IV length, measured in bits

For example, with S = 225 encryption sessions, each with R = 2'5 encrypted records (so the total is still 240
encrypted records), we get an upper bound of p < 25 when using 128-b IVs and p < 2-3' when using 96-b IVs
[compared to the bounds of 24¢ and 2-'7, respectively, taken from Equation (B.1)]. The same argument as in
B.7.1 can also be used here to show that this bound is quite tight.

B.7.3 Example 3: Randomizing only the key

In this example, the cryptographic unit chooses a fresh cipher key for every encryption, and uses the integer |
as the |V for the I record in an encryption session. Clearly, no collisions are possible between |Vs in the same
encryption session, and therefore the only risk is key-collision, which happens with negligible probability
(since the encryption keys are at least 256 b long).

B.8 How many records to encrypt with one key?

The bounds from the examples in B.7 may be used as guidance for the maximum amount of data to encrypt
with a single cipher key. Specifically, given the maximum acceptable probability of an IV-collision, and
knowledge of the cryptographic mode and the collision-avoidance strategy used by the cryptographic unit, one
may set an upper bound for data to encrypt with a single cipher key.

Table B.1 contains the maximum number of records for a single key for the collision-avoidance strategies
In the examples from B.7.1 and B.7.2. For random Vs, the expression from Equation (B.2) is used (which
Is heuristically a bit more accurate than the expression in Equation (B.1) for large values of €), and for
incrementing random |Vs, the expression from Equation (B.3) with R = 275 is used (i.e., assuming that each
encryption session is used to encrypt 2'5 records).

37

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

It should be stressed, however, that the bounds in Table B.1 only consider the probability of IV-collisions, and
In most settings there are many other considerations that shall be taken into account. For example, 5.1 includes
some other limits on the amount of data that can be encrypted per cipher key, and XTS and CBC encryption
modes entail their own limitations, as discussed in their respective standards (IEEE Std 1619 and NIST SP

800-38A, respectively).

Table B.1—Maximum number of encrypted records per key

Maximum acceptable 96-b Vs 128-b Vs

probability of Equation (B.Z) Equation (B.3), Equation (B.3),

I\V-collisions R =21 Equation (B.2) R=2%
p=2-4(~1in 1012) ~3.80 % 108 ~4.86 % 1010 ~2.49x1{l_13 ~3.18 x 10"
p=2-30(~1in10¢) ~1.21 x 1010 ~1.55 x 1012 ~ 7.96 x 104 ~1.02 x 109
p=2-20(~1in108) ~ 3.89 x 10 ~4.97 x 101 ~2.55 x 10re ~3.26 x 10'%
p=2-1(1in1024) ~1.24 x 1013 ~1.59 x 1015 ~8.15x 107 ~1.04 x 10
p=0.5 ~3.98 x 1014 ~3.60 x 101 ~2.61x 10" ~ 2.36 » 102

38

IEEE Std 1619.1-2018
|IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

Annex C
(informative)
Documentation summary

Table C.1 summarizes the documentation needed for compliance to this standard.

Table C.1—Documentation summary

Doc # Documentation description See I
1 Provide documentation to the end-user about the cryptographic unit. 4.1
2 Describe how the plaintext record formatter generates plaintext records from host records. 43
3 Describe how the plaintext record de-formatter generates host records from plaintext recprds. 1.4
4 Disclose whether the cryptographic unit validates the MAC before returning any plaintex{ 4p.2
5 ?eﬁne the special signal FAIL and describe how the host and/or controller receive such | 4.6.2
a signal.

'he special signal FAIL should identify the host records that failed the MAT validation.
6 If the cryptographic unit is capable of returning plaintext before validating the MAC, then | 4.6.2
define
the special signal PASS, describe how the host and/or controller receive such a signal,
- and-dgfine

limits for the number of host records and bytes of plaintext that the cryptographic may

return
before checking the MAC.
7 If a cryptographic unit supports ordering verification, then specify the methods for |4.6.3
——enabling
or disabling this functionality, and specify how the cryptographic unit notifies the host
and/of
controller of inconsistent IV or AAD ordering, and how to recover, if possible.
8 Describe all cryptographic parameters used by the cryptographic unit. 4.7
9 Specify the parameter limits for the cryptographic unit, if different from those in Table 2. 5.1

10 If the cryptographic unit supports CBC-HMAC, then describe the format of the AAD |5.4
and the
method used to determine where the AAD ends and the CBC-IV starts.
11 If the cryptographic unit supports XTS-HMAC, then describe the format of the AAD | 5.5
— and the
method used to determine where the AAD ends and the Tweak starts.
12 Describe the RBG employed by the cryptographic unit, including algorithms and 6.1
descriptions of
sources of randomness.
13 If the cryptographic unit supports cryptographic key entry or export, then specify the 6.2
- supportted
cryptographic key entry and export methods.
14 If the cryptographic unit supports key wrapping, then describe all key wrapping routines | 6.4
that the
cryptographic unit supports.

15 Describe the format of the IV and the cryptographic unit's mechanism for generating each IV. 6.5.3.3

16 The cryptographic unit may clear its encryption session state based on a command 6.5.3.4
received from

the host. Describe such a command, if supported.
17 When creating unigue IVs within a self-contained group, describe how the system 6.6
prevents reuse

of the same |V between any two cryptographic units within the self-contained group and
how the

cryptographic units are uniquely identified.

39

IEEE Std 1619.1-2018
|IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

Annex D

(informative)

Test vectors

D.1 General

A cryptographic unit should test its cryptographic functions using test vectors included within this standard
and/or within the reference documents. Table D.1 shows the recommended test vectors for each chosen
cryptographic mode.

Table D.1—Recommended test vectors

Algorithm Recommended test vectors
CCM-128-AES-256 (see 5.2) SeeD.2
GCM-128-AES-256 (see 5.3) SeeD.3
CBC-AES-256-HMAC-SHA-1 (see 5.4) SeeD.4
CBC-AES-256-HMAC-SHA-256 (see 5.4) See D.4
CBC-AES-256-HMAC-SHA-512 (see 5.4) See D4
XTS-AES-256-HMAC-SHA-512 (see 5.5) SeeD.5

For all of the test vectors, the following acronyms and abbreviations apply:
AAD additionally authenticated data

CIvV CBC-IV for CBC-HMAC modes (see 5.4)

CTX Ciphertext record

DUS Data unit sequence number

HMK 160-, 256-, or 512-b HMAC key

IV Initialization vector

KEY 256-b AES key

KEY1 (XTS only) first 256 b of the cipher key

KEY2 (XTS only)second 256 b of the cipher key

N/A not applicable

NON Nonce IV for CBC-HMAC modes (see 5.4)

PTX Plaintextrecord

RPT Repeat the previousAAD a given number of times

TAG MAC (message authentication code)

40

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

For readability, the examples explicitly parse the XTS-AES-256 key into Key1 and Key2. HMK is the XTS-
AES-256 HMAC key.

All numbers within the XTS test vectors are in little-endian bit order (same as |IEEE Std 1619). The base for
these numbers is hexadecimal.

All numbers within all other test vectors are in big-endian bit order, in which the most significant byte is on
the left. The base for these numbers is hexadecimal, except for the "RPT" field, which is in decimal. Within a
particular test vector, if multiple lines start with the same prefix, these lines are concatenated.

For all test vectors, each pair of hexadecimal digits is grouped into a byte such that the left digit is
the most significant and the right digit is the least significant.

For the CBC-HMAC test vectors (see D.4), use only the leftmost bits of HMK, according to the key size
required for the algorithm. For example, CBC-AES-256-HMAC-SHA-1 uses the first 160 b of HMK, and
CBC-AES-256-HMAC-SHA-256 uses the first 256 b of HMK.

D.2 CCM-128-AES-256 test vectors
D.2.1 CCM-128-AES-256 test vector 1

KEY 00
I\ 000000000000000000000000

PTX 00000000000000000000000000000000

CTX ¢1944044c8e7aa95d2de9513¢7f3dd8c

TAG 4b0a3e5e51f151eb0ffae7c43d010fdb

D.2.2 CCM-128-AES-256 test vector 2

KEY 00
IV 000000000000000000000000

AAD 00000000000000000000000000000000

TAG 904704e89fb216443cb9d584911fc3c2

D.2.3 CCM-128-AES-256 test vector 3

KEY 00
IV 000000000000000000000000

AAD 00000000000000000000000000000000

PTX 00000000000000000000000000000000

CTX ¢1944044c8e7aa95d2de9513¢7f3dd8¢c

TAG 87314e9c1fa01abebab415943dc38521

D.2.4 CCM-128-AES-256 test vector 4

KEY fb7615b23d80891dd470980bc79584c8b2fb64ce60978f4d17fced5a49e830b7
IV dbd1a3636024b7b402da7d6f

PTX aB845348ec8c5b5f126f50e76fefd1ble CTX
ccB881261c6a7fa7’2b96a1739176b277f TAG
3472e1145f2c0cbe146349062cf0e423

41

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

D.2.5 CCM-128-AES-256 test vector 5

KEY 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f
IV 101112131415161718191a1b

AAD 000102030405060708090a0b0c0d0e0f10111213

PTX 202122232425262728292a2b2c2d2e2f3031323334353637

CTX 04f883aeb3bd0730eaf50bb6dedfa2212034ed4e41b0e75e5

TAG 9bba3f3a107f3239bd63902923f80371

D.2.6 CCM-128-AES-256 test vector 6

KEY 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f
IV 101112131415161718191a1b

AAD 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
AAD 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
AAD 404142434445464748494a4b4c4d4ed4f505152535455565758595a5b5¢c5d5e5f
AAD 606162636465666768696a6b6cbd6ebf/07172737475767778797a7bicid7e7f
AAD 808182838485868788898a8b8c8d8e8f909192939495969798999a9b9¢c9d9%e9f
AAD alala2a3adababaiaB8a%9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf
AAD cOc1c2c3cdchebeicBc9cacbececdececfd0d1d2d3d4d5d6d7d8d9dadbdedddedf
AAD elele2e3edeSebele8efeaebecedeeeffOf1f2f3f4f5f6f7 f8f9fafbfcfdfeff

RPT 0256

PTX 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
CTX 04f883aeb3bd0730eaf50bb6ded4fa2212034ed4ed41b0e75e577febf2422c0f6d2
TAG 3376d2cf256ef613c56454cbb5265834

D.2.7 CCM-128-AES-256 test vector 7

KEY 404142434445464748494a4b4c4d4ed4f505152535455565758595a5b5c5d5e5f
IV 101112131415161718191a1b

AAD 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
PTX 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1elf
PTX 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
PTX 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5¢c5d5e5f
PTX 606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f
PTX 808182838485868788898a8b8cB8dB8e8f909192939495969798999a9b9¢c9d9e9f
PTX alala2a3adababa7a8a9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf
PTX cOc1c2c3cdchecbe7c8c9cacbeecedececfdld1d2d3d4d5d6d7d8d9dadbdeddded
PTX elele2e3edebebe7e8efeaecbecedeeeffOf1f2f3f4f5f6f7f8f9fafbfcfdfeff

CTX 24d8a38e939d2710cad52b96fe6f82010014cd4cd43b2e55¢c557d69f0402e0d6f2
CTX 06c53d6cbd3f1c3cbdeSdedcaddfb74f25741dea741149fed278a0cc24741e86
CTX 58cc0523b8d7838c60fb1dedb7c3941f5b26dea9322aa29656ec37ac18a9b108
CTX a6f38b7917f5a9c398838b22afbd17252e96694a9e6237964a0eae21c0abe152
CTX 15a0e82022926be97268249599e456e05029¢c3ebc07d78fc5b4a0862e04e68c2
CTX 9514c7bdafc4b52e04833bf30622e4ebd42504a44a9dcbec774752de7bb82891ad
CTX 1eba9dc3281422a8aba8654268d3d9c81705f4c5a531ef856df5609a159af738
CTX eb753423ed2001b8f20c23725f2bef18c409f7e52132341f27cb8f0e79894dd9
TAG ebb1fa9d28ccfe21bdfea7e6d91elbab

D.2.8 CCM-128-AES-256 test vector 8

KEY fb7615b23d80891dd470980bc79584c8b2fb64ce6097878d17fced5a49e830b7
IV dbd1a3636024b7b402da7d6f

42

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

AAD 36
PTX a9
CTX 9d
TAG 3261b1cf931431e99a32806738ecbd2a

D.2.9 CCM-128-AES-256 test vector 9

KEY f8d476cfd646eabc2384cb1c27d6195dfef1a9f37b9c8d21a79c21f8cb90d289
IV dbd1a3636024b7b402da7d6f

AAD 7bd859a247961a21823b380e9fe8b65082bab1d3

PTX 90ae61cf7baebd4cade494c54a29ae70269aec7 1

CTX 6c05313e45dc8ec10beabe670bd94f31569386a6

TAG 8f3829e8e76ee23c04f566189e63c686

D.3 GCM-128-AES-256 test vectors
D.3.1 GCM-128-AES-256 test vector 1

KEY 00
IV 000000000000000000000000

PTX 00000000000000000000000000000000

CTX cea7403d4d606b6e074ec5d3baf39d18

TAG d0d1c8a799996bf0265b98b5d48ab919

D.3.2 GCM-128-AES-256 test vector 2

KEY 00
IV 000000000000000000000000

AAD 00000000000000000000000000000000

TAG 2d45552d8575922b3ca3cc538442fa26

D.3.3 GCM-128-AES-256 test vector 3

KEY 00
IV 000000000000000000000000

AAD 00000000000000000000000000000000

PTX 00000000000000000000000000000000

CTX cea7403d4d606b6e074ec5d3baf39d18

TAG ae9b1771dba9¢cf62b39be017940330b4

D.3.4 GCM-128-AES-256 test vector 4

KEY fb7615b23d80891dd470980bc79584c8b2fb64ce60978f4d17fced45a49e830b7
IV dbd1a3636024b7b402da7d6f

PTX aB845348ec8chbbf126f50e76fefd1b1e CTX
5df5d1fabcbbdd051538252444178704 TAG
4c43cceba574d8a88b43d4353bd60fOf

D.3.5 GCM-128-AES-256 test vector 5

KEY 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f
IV 101112131415161718191a1b

43

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

AAD 000102030405060708090a0b0c0d0e0f10111213

PTX 202122232425262728292a2b2c2d2e2f3031323334353637
CTX 591b1ff272b43204868ffc7bc7d521993526b6fa32247c3c
TAG 7de12a5670e570d8caeb24a16df09c08

D.3.6 GCM-128-AES-256 test vector 6

KEY 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f
IV 101112131415161718191a1b

AAD 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1elf
AAD 2021222324252627268292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
AAD 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5¢c5d5e5f
AAD 606162636465666766696a6b6c6d6ebf707172737475767778797a7b7c7d7e7f
AAD 808182838485868786898a8b8c8d8e8f909192939495969798999a9b9¢c9d9e9f
AAD alala2a3ad4ab5aba7aBa9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf
AAD cOc1c2c3cd4chebe7cB8c9cacbeecedeecfd0d1d2d3d4d5d6d7d8d9dadbdedddedf
AAD eleleZle3edebebe’ebe9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fafbfcfdfeff

RPT 0256

PTX 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
CTX 591b1ff272b43204868ffc7bc7d521993526b6fa32247c3c4057f3eae7548cef
TAG a1de5536e97edddccd26eeb1b5ff7b32

D.3.7 GCM-128-AES-256 test vector 7

KEY 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f
IV 101112131415161718191a1b

AAD 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
PTX 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1elf
PTX 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
PTX 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5¢5d5e5f
PTX 606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f
PTX 808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f
PTX alala2a3ad4ababa7a8a9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf
PTX c0c1c2c3cdchebe7c8c9cacbeccdeecfd0d1d2d3d4d5d6d7d8d9dadbdedddedf
PTX elele2e3edebebe7e8e9eacbecedeeeffOf1f2f3f4f5f6f7f8fOfafbfcfdfeff

CTX 793b3fd252941224a6afdc5be7f501b9150696da12045¢1c6077d3cac?74accf
CTX c3d530d848d665d81a49cbb500b88bbb624ae61d1667229c302dc6ffObb4d70b
CTX dbbc8566d6f5b158da99a2ff2e01dda629b89c34ad1ebfeba/Oe7aaed 328289c¢
CTX 3629b0588350581ca8b97ccf1258fa3bbe2c502604 7ba72648969cffBba10ae3
CTX 0e05935df0c693741892b76faf67133abd2cf2031121bd8bb38127add2eedeea
CTX 13276494f402cd7c107fb3ec3b24784834338e55436287092acd4a2bfbeaeada
CTX d68d73151639b05b24e68b9816d1398376d8e4138594758db9%ad3b409259b26d
CTX cfc06e722be987b3767f70a7b856b774b1ba2685b368091429fcch8dcddel9e4
TAG 87ec837abf532855b2cea169d694 3fcd

D.3.8 GCM-128-AES-256 test vector 8

KEY fb7615b23d80891dd470980bc79584c8b2fb64ce6097878d17fced45a49e830b7 IV
dbd1a3636024b7b402da7d6f

AAD 36

PTX a9

CTX Oa

TAG be987d009a4b349aa80cb9c4ebc1e9f4

44

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

D.3.9 GCM-128-AES-256 test vector 9

KEY f8d476cfd646eabec2384cb1c27d6195dfef1a9f37b9cB8d21a79c21f8cb90d289
IV dbd1a3636024b7b402da7d6f

AAD 7bd859a247961a21823b380e9fe8b65082bab1d3

PTX 90aeb1cfibaebd4caded494c54a29ae70269aecy 1

CTX ce2027b47a843252013465834d75fd0f0729752e

TAG acd8833837ab0ede84f4748daB8899¢c15

D.3.10 GCM-128-AES-256 test vector 10

KEY dbbc8566d6f5b158da99a2ff2e01dda629b89c34ad1e5feba/Oe/aaed4328289c
IV cfc06e722be987b3767f70a7b856b774 PTX ce2027b47a843252013465834d75fd0f CTX
dc03e524830d30f88e197f3acacebbef TAG 9984eff6905755d1836f2db04089634c

D.3.11 GCM-128-AES-256 test vector 11

KEY 0e05935df0c693741892b76faf67133abd2cf2031121bd8bb38127add2eedeea
IV 74b1ba2685b368091429fccb8dcdde(9e4

AAD 7bdB59a247961a21823b380e9fe8b65082bab1d3

PTX 90ae61cf/baebd4cade494c54a29ae70269aec? 1

CTX 6beb5e56066c4056738c03fe2320974ba3f65e09

TAG 6108dc417bf32f7fb7554ae52f088f87

D.3.12 GCM-128-AES-256 test vector 12

KEY 00
IV 02cbbc7a03eb4de39d80d1ebc988bfdf

AAD 688e1aa984de926dc7bdca7i44

PTX a2aab3ad8b17acdda288426cd7c429b7ca86b7acal5809c70ce82db25711cbh53
PTX 02eb2743b036f3d750d6cf0dc0acbh92950d546db308f93b4ff244afa9dc72bed
PTX 758d2c

CTX eeb2552aebclc3cidaae12bbbec32ca5al05f4a1aaab004ed0f0b30abbf15acf4
CTX c50c59662d4b4468419544e7f981973563ce556ae50859ee09b14d31a053986f
CTX 9ac89b

TAG 9cd0db936e26d44be974ba868285a2e1

D.4 CBC-AES-256-HMAC-SHA test vectors (including HMAC-SHA-1, HMAC-
SHA-256, and HMAC-SHA-512)

D.4.1 CBC-AES-256-HMAC-SHA test vector 1

KEY 00
HMK 00
HMK 00
NON N/A

ClVv 00000000000000000000000000000000

PTX 00000000000000000000000000000000

CTX dc95c078a2408989ad48a21492842087

HMAC-SHA-1

45

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

TAG 59bb230e817ad3f377d623d2ca97eeffd0fd467c

HMAC-SHA-256

TAG 2cf16e982f18a9009687c8a8bf26¢cfd31e66bdda7277008d9564dd4779511855
HMAC-SHA-512

TAG bf8b5d45be53465f09ed9a4f53c565f067b3138318195425dfc466856973170d
TAG f8414dceb7d1c8888a622de9ea480840193f8ebd94c34a26bb692a31568e3949

D.4.2 CBC-AES-256-HMAC-SHA test vector 2

KEY 00
HMK 00
HMK 00
AAD 00000000000000000000000000000000

NON N/A

CIVv 00000000000000000000000000000000

HMAC-SHA-1

TAG 66040990c7992a2a00d037d0b8631c0db1785897

HMAC-SHA-256

TAG 853c7403937d8b6239569b184eb7993fc5f751aefcea28f2c863858e2d29c50b
HMAC-SHA-512

TAG 65e879d47df1def0af378d32e9f4fe3a824fb51e2143c03322def229361af3b1

TAG 7a724a3d653d05ch9f41f4b90d09e8e2886a78dad48537d1cfab62977aB82e7374e

D.4.3 CBC-AES-256-HMAC-SHA test vector 3

KEY 00
HMK 00
HMK 00
AAD 00000000000000000000000000000000

NON N/A

CIV 00000000000000000000000000000000

PTX 00000000000000000000000000000000

CTX dc95c078a2408989ad48a21492842087

HMAC-SHA-1

TAG d5adb529213cd69a9a3d69cf2d10b0b469d936fe

HMAC-SHA-256

TAG 16a65111bd8e5a0af5f001f7d9200d44252bcfed5dc34da42315b99213b9cbb4b
HMAC-SHA-512

TAG 6d63ccdc62d5d376cc86ebba144568d04b8cdf28955509df10a4bbe8c734d5af
TAG 37e8e524d30fed83d324b8dedb06d86636baa67f85caacy 3cc993f00ech92dec

D.4.4 CBC-AES-256-HMAC-SHA test vector 4

KEY fb7615b23d80891dd470980bc79584c8b2fb64ceb0978f4d17fced5a49e830b7
HMK 1b07a0e93c1f4c3aadff671dd2611ac2fe22d34c6b6d8630c30dd44f41d49fed
HMK ad0Oa3dbdd0f13ca27e6523c5edelab12884741a1af9b95f3cf6cO0aec3b68badl
NON N/A

CIV dbd1a3636024b7b402da7d6fe3fb056e

PTX a845348ec8c5b5f126f50e76fefd1b1e

CTX fd057a7fed17bd747aced/b6fc948567

HMAC-5HA-1

TAG 3bd64954b1b5b0a98ac3a6f95d2e5fe65b5377c0

HMAC-SHA-256

46

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

TAG 3e5530fb364c80696b1b2f69e8d0del64a3e07ad1a0b795f00fcdec1649cabch
HMAC-SHA-512

TAG 444aec157e48e683626bf14d26c9bfd9515d5def34582¢034f0c3311dd7d9753
TAG 591f3effe264b8cdfaf755177b8a020a47edb7331fef628523d708aefe09b0da

D.4.5 CBC-AES-256-HMAC-SHA test vector 5

KEY 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f
HMK 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
HMK 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5¢f
AAD 000102030405060708090a0b0c0d0e0f10111213

NON N/A

CIV 101112131415161718191a1b1c1d1e1f PTX
202122232425262728292a2b2c2d2e2f CTX

7b626546c8d79cdebb66edef23b9b7d72 HMAC-

SHA-1

TAG ¢7932ddb8fc2212b56b1207e81019b556f4bb7d9

HMAC-SHA-256

TAG 6b0fe0b40ad41e32d2c61726a3d7834014a8ee07873ccfelc23f3a9073b90b099
HMAC-SHA-512

TAG efac7480579348343d1e9af4fc6896968080439717c3b2c3e63013aa718261f0
TAG e3eed3cbfdb4372f020d64c9feedbc7743cfd9262d3adf03aec4f8d99fd178e4

D.4.6 CBC-AES-256-HMAC-SHA test vector 6

KEY 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f
HMK 202122232425262728292a2b2¢c2d2e2f303132333435363738393a3b3c3d3e3f
HMK 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f
AAD 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
AAD 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
AAD 404142434445464748494a4b4c4d4edf505152535455565758595a5b5¢c5d5e5f
AAD 606162636465666768696a6b6c6d6ebf707172737475767778797a7b7c7d7e7f
AAD 808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f
AAD alala2a3adababa7aBa9aaabacadaeafb0b1b2b3b4b5b6b7b8b9babbbchbdbebf
AAD c0c1c2c3cdchebe7c8c9cacbecedeecfd0d1d2d3d4d5d6d7d8d9dadbdedddedf
AAD elele2e3edebebe7eBe9eaebecedeeeffOf1f2f3f4f5f6f7f8f9fafbfcfdfeff

NON N/A

CIV 101112131415161718191a1b1cid1elf

PTX 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3elf
CTX 7b626546¢c8d79cdebbbedef23b9b7d723d5f9dobc2ad411f1eb448442250eecal
HMAC-SHA-1

TAG 49dc3eacadcc028df2bf9a4598e3fec6624c8b38

HMAC-SHA-256

TAG c2ead5b50293d8f62d348ef23aec702268ebb6bb3e2248eb9f71a5817709daz2f
HMAC-SHA-512

TAG 8b2e672aacc78bbff58c770fd0deed252201ebbae95dceec912c0cf3bf27171b
TAG 3627abfefc3cc8b9f9eb64b542b64c06ebb786f986cdc8296bac15111dbffa82f

D.4.7 CBC-AES-256-HMAC-SHA test vector 7

KEY 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f
HMK 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
HMK 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5¢c5d5e5f

47

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

AAD 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
NON N/A

CIV 101112131415161718191a1b1c1d1e1f

PTX 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1elf
PTX 202122232425262728292a2b2¢2d2e2f303132333435363738393a3b3c3d3e3f
PTX 404142434445464748494a4b4c4d4edf505152535455565758595a5b5¢c5d5e5f
PTX 606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f
PTX 808182838485868788898a8b8c8d8e8f909192939495969798999a9b9¢c9d9e9f
PTX a0ala2a3adababa7a8a9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf
PTX c0c1c2c3cdc5cbe7c8c9cachecedeecfd0d1d2d3d4d5d6d7d8d9dadbdedddedf
PTX elele2e3edebebe7e8e9eaecbecedeeeffOf1f2f3f4f5f6f7f8fOfafbfcfdfeff

CTX c9cb7b3859e1a550bcbf11b624022c56¢c3ad1479e5¢ce7034d7a03¢c13d8fb9502
CTX 6f7254c50ced4ebd743486d00e09ddd8e873a7e98984ad43f57088c510e911700
CTX 6acfe2fef69b4010f0f05a93af7d3a93a02085780fd5acb3a4eb870933077752
CTX 2f2c18e310ac0c0c3766beal3ed7f71996336e4831f3b411fb2700ddbab565673
CTX 315bf4ab73c7e11abac4d0cfc228f1ac60dd10f85f9c2aded46a9afSeachba?4a
CTX 43839bh942e7 1cadce2080a809a04a849105da07efbbb2f60b9c376e0354e2a27
CTX daleaabc7adea77890cc25b6bd48229e17ce518040ceb46a04fc7b62444e77b5
CTX aaf3dbf60a660a2b68ec640622716b07758d99a0f598a73ed8bdae74faldaae’f
HMAC-SHA-1

TAG 2e08d65f81ff646ad05ab7aaf42903aa760e577a

HMAC-SHA-256

TAG ebfe6f31bed473ab22b649602a77f7408508dfab0cad109cbc97f2fe5f8bb8583
HMAC-SHA-512

TAG 7b326204521161942844c0970391344cdac7 1ce0440325b02203b537dd930799
TAG 0e158541dfc52cfcf69d3e8085658de4c98bc030273bad369fdf28aaad40e63c

D.4.8 CBC-AES-256-HMAC-SHA test vector 8

KEY fb7615b23d80891dd470980bc79584c8b2fb64ce6097878d17fce45a49e830b7
HMK cc84a6cca8f97b8a562407 1aec7d09e7ci5bdaff239d467270f9716ba234d109
HMK ac60cf491d5105fc60fc5804c6474bc35cf9ead9123da80f649ca15a98a243d6
AAD 7bd859a2

NON N/A

CIV dbd1a3636024b7b402da7d6f54a67dc8 PTX
90aeb1cf7baebd4caded494c54a29ae70 CTX
6cd763ff6144ede649c486f9404a5307 HMAC-

SHA-1

TAG efc87d364ccab9d4bdc241185f1d847e2e16d8c4

HMAC-SHA-256

TAG f130415f56372bcd17250339d82118ca347be4ciff9f69181757cf5e98b0a775
HMAC-SHA-512

TAG 1604c3afb72546c2f6a9135df46ae799fdae4d9f5a87fdffd552016c5e4ed98a
TAG 393b62822df55b076e3dc6f9668234919bbdcc99f2b40379754cc6ac30c97250

D.4.9 CBC-AES-256-HMAC-SHA test vector 9

KEY 00
HMK 00
HMK 00
NON 00000000000000000000000000000000 CIV dc95c078a2408989ad48a21492842087
PTX 00000000000000000000000000000000

48

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

CTX 08c374848c228233¢c2b34f332bd2e9d3

HMAC-SHA-1

TAG dedf216e04f467eaad1e5a72b6a7c962c8281f13

HMAC-SHA-256

TAG 1f4dd7b6d7436b5b7d325c0c2411ed4fc02¢c101949eb8269e8166e8c6325e858
HMAC-SHA-512

TAG d8677480b0466345b3c32baa2c2b502fb3bfba01e759c4d1dal4ca7c20dd9e55
TAG 00b3675d0e78e080125b68fd0c584ff3144b1e155a1136785ad723f3c69e23b5

D.5 XTS-AES-256-HMAC-SHA-512 test vectors
D.5.1 XTS-AES-256-HMAC-SHA-512 test vector 1

Key1 2718281828459045235360287471352662497757247093699959574966967627
Key2 3141592653589793238462643383279502884197169399375105820974944592
HMK 00
HMK 00
DUS ff000000000000000000000000000000

PTX 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1elf
PTX 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
PTX 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5¢c5d5e5f
PTX 606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f
PTX 808182838485868788898a8b8c8d8e8f909192939495969798999a9b9¢c9d9e9f
PTX alala2a3adasaba’aB8a9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbchdbebf
PTX c0c1c2c3cdchcbe7c8c9cachecedeecfd0d1d2d3d4d5d6d7d8d9dadbdedddedf
PTX elele2e3ededSebe7e8e9eaebecedeeeffOf1f2f3f4f5f6f7f8f9fafbfcidfeff

PTX 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1elf
PTX 202122232425262728292a2b2¢2d2e2f303132333435363738393a3b3c3d3e3f
PTX 404142434445464748494a4b4c4d4edf505152535455565758595a5b5¢c5d5e5f
PTX 606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f
PTX 8081828368485868788898a8b8c8d8e8f909192939495969798999a9b9¢c9d9e9f
PTX a0ala2a3adababa7a8a9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf
PTX c0c1c2c3cdc5cbe7c8c9cacheccdeecfd0d1d2d3d4d5d6d7d8d9dadbdedddedf
PTX elele2e3edebebe7e8e9eaecbecedeeeffOf1f2f3f4f5f6f7f8fOfafbfcfdfeff

CTX 1c3b3a102f770386e4836c99e370cf9beal0803f5e482357adae12d414a3e63b
CTX 5d31e276f8fe4a8d66b317f9ac683f44680a86ac35adfc3345befecb4bb188fd

CTX 5776926c49a3095eb108fd1098baec70aaab6999a72a82f27d848b21d4a741b0
CTX c5cd4d5fff9dac89aeba122961d03a757123e9870f8acf1000020887891429¢ca
CTX 2a3e7a7d7df7b10355165c8b9abd0a7de8b062c4500dc4cd120c0f7418dae3d0
CTX b5781¢c34803fa75421c790dfe1de1834f280d7667b327f6c8cd7557e12ac3alf
CTX 93ec05c52e0493ef31a12d3d9260f79a289d6a379bc70c50841473d1a8ccB81ec
CTX 583e9645e07b8d9670655basbbcfecc6dc3966380ad8fecb17b6ba02469a020a
CTX 84e18e8f84252070c13e9f1f289be54fbcd81457778f616015e1327a02b140f1
CTX 505eb309326d68378f8374595c849d84f4c333ec4423885143cb47bd71c5edae
CTX 9be69a2ffeceb1bec9de244fbe15992b11b77c040f12bd8f6a975a44a0f90c29
CTX a9abc3d4d893927284c58754cce294529f8614dcd2aba991925fedcdae74ffac
CTX 6e333b93eb4aff0479da9a410e4450e0dd7aedc6e2910900575da401fc07059f
CTX 645e8b7e9bfdef33943054ff84011493c27b3429%eaedb4ed5376441a77ed4385
CTX 1ad77f16f541dfd269d50d6a5f14fb0aab1cbb4c1550be97f7ab4066193c4caa
CTX 773dad38014bd2092fa755c824bb5e54c4f36ffda9fcea70b9c6e693e148¢c151
TAG 1c7105d3c1e8e235ffb013d5e8023729a35cdeacc16af1d7f5f0fec6c036b167
TAG 87164968 7c5692aaalada9773671939bbce2a3d15dcae4367 1aabecabf3ad6abf

49

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

D.5.2 XTS-AES-256-HMAC-SHA-512 test vector 2

Key1 2718281828459045235360287471352662497757247093699959574966967627
Key2 3141592653589793238462643383279502884197169399375105820974944592
HMK 1b07a0e93c1f4c3aadff671dd2611ac2fe22d34c6b6d8630c30dd44f41d49fe5
HMK ad0a3dbdd0f13ca27e6523c5ed4e2ab12884741a1af9b985f3cféc0aec3b68badl
DUS ffffO000000000000000000000000000

PTX 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1cid1elf
PTX 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3elf
PTX 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5¢f
PTX 606162636465666768696a6b6c6d6ebf/07172737475767778797a7b7cid7e7f
PTX 808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f
PTX alala2a3adaSaba7a8a9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf
PTX c0c1c2c3cdchebe7c8c9cacbeeccdeecfdld1d2d3d4d5ded7dB8d9dadbdedddedf
PTX elele2e3edeSebe/e8e9eaebecedeeeffOf1f2f3f4f5f6f 7 f8fOfafbfcfdfeff

PTX 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1cid1elf
PTX 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3elf
PTX 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f
PTX 606162636465666768696a6b6c6d6ebf/07172737475767778797a7b7cid7erf
PTX 808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f
PTX alala2a3adababa’a8a9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf
PTX c0c1c2c3cdchebeic8e9cacbeeccdeecfdld1d2d3d4d5d6d7d8d9dadbdedddedf
PTX elele2e3edeSebe/e8e9eaebecedeeeffOf1f2f3f4f5f6f 7 f8fOfafbfcfdfeff

CTX 77a31251618a15e6b92d1d66dffe7b50b50bad552305ba0217a610688eff7e11
CTX e1d0225438e093242d6db274fde801d4cael6f2092c728b2478559df58e837¢c2
CTX 469eedadfa794edbbc7f39bc026e3cb72c33b0888f25b4acf56a2a9804f1cebd
CTX 3d6e1dcbcal181d4b546179d55544aa7760c40d06741539¢c7e3cd9d2f6650b201
CTX 3fd0eeb8c2b8e3d8d240ccae2d4c98320a7442e1c8d75ad42d6ebefadc2ecal 9
CTX 8d158c7aecdf82490f24bb9b38e108bcda12c3faf9a21141c3613b58367f922a
CTX aa26cd22f23d708dae699ad7cb40a8ad0b6e2784973dcb605684c08b8d6998c6
CTX 9aac049921871ebb65301a4619ca80ecb485a31d744223ce8ddc2394828d6a80
CTX 470c092f5ba413c3378fab054255c6f9df4495862bbb3287681f931b687c888a
CTX bf844dfc8fc28331e579928cd12bd2390ae123cf03818d14deddeS5cl0c24c8ab0
CTX 18bfca75ca096f2d531f3d1619e785f1adad37cab92e980558b3dce1474afb75
CTX bfedbf8ff54cb2618e0244c9ac0d3c66fb51598cd2db11f9be39791abed47c63
CTX 094f7c453b7ff87cb5bb36b7c79efb0872d17058b83b15ab0866ad8a58656¢5a
CTX 7e20dbdf308b2461d97c0ec0024a2715055249cf3b478ddd4740de654f75cab8
CTX 6e0d7345c69ed50cdc2a8b332b1f8824108ac937eb050585608ee734097fc090
CTX 54fbff89eeaecea791f4a7ab1f9868294a4f9e27b42af8100cb9d59cef9645803
TAG ecabc09097f1401bc289548a9b932bf197a1a7002665f36529e5e137395facc9
TAG 7133399c65a05f15cc81abcB8067 155ccaabd6fab4f744cb1d987d29100c7523

D.5.3 XTS-AES-256-HMAC-SHA-512 test vector 3

Key1 2718281828459045235360287471352662497757247093699959574966967627
Key2 3141592653589793238462643383279502884197169399375105820974944592
HMK 072126bc492870f666b25023a548a9154b64d06f890ba3542b5198466c60c53d
HMK b4763dddadde7bbc469113a8cd9196e064ff86b04d1cbbfdfdc305998402756d
AAD 6369757120656854206e776f7262206b706d756a20786f6674207265766f2073
DUS ffffff00000000000000000000000000

PTX 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1elf
PTX 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
PTX 404142434445464748494a4b4cd4d4edf505152535455565758595a5b5c5d5e5f
PTX 606162636465666768696a6b6c6d6e6f707/172737475767778797a7bicid7elf

50

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

PTX 808182838485868788898a8b8c8d8e8f909192939495969798999a9b9¢c9d9e9f
PTX a0ala2a3adababa7a8a9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf
PTX c0c1c2c3cdc5cbe7c8c9cachececdeecfd0d1d2d3d4d5d6d7d8d9dadbdedddedf
PTX elele2e3edebebe7e8e9eaecbecedeeeffOf1f2f3f4f5f6f7f8fOfafbfcfdfeff

PTX 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1elf
PTX 202122232425262728292a2b2¢2d2e2f303132333435363738393a3b3c3d3e3f
PTX 404142434445464748494a4b4c4d4edf505152535455565758595a5b5¢c5d5e5f
PTX 606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f
PTX 808182838485868788898a8b8c8d8e8f909192939495969798999a9b9¢c9d9e9f
PTX a0ala2a3adababa7a8a9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf
PTX c0c1c2c3cdc5cbe7c8c9cachececdeecfd0d1d2d3d4d5d6d7d8d9dadbdedddedf
PTX elele2e3edebebe7e8e9eaecbecedeeeff0f1f2f3f4f5f6f7f8fOfafbfcfdfeff

CTX e387aaa58ba483afa7e8eb469778317ecfd4cf573aa9%d4eac23f2cdf914e4e200
CTX a8b490e42ee646802dcbee2bd71b278195d60918ececb44bf79966f83faba049
CTX 9298ebc699c0c86347 15a320bb4f075d622e74c8c932004f25b41e361025b5a8
CTX 7815391f6108fc4afaba05d9303c6bab8a128a55705d415985832fdeaaebe8e
CTX 9110e84d1b1f199a2692119edc96132658f09da7c623efcec712537a3d94cObf
CTX 5d7e352ec94ae5797fdb377dc1551150721adf15bd26a8efc2fcaad56881fa%e
CTX 62462c28f30ae1ceaca93c345cf243b73f542e2074a705bd2643bb9f7cc79bb6b
CTX e7091eabe232df0f9ad0d6cf502327876d82207abf2115cdacf6éd5a48f6¢c1879
CTX ab5b115f0f6b3cb3c59d15dd8c769bc014795a183713901b5845eb491adfefel
CTX 97b1fa30a12fc1f65ba22905031539971a10f2f36c321bb51331cdefb39e3964
CTX c7ef079994f5b69b2edd83a71ef54997 1ee93f44eac3938fcdd61d01fa71799d
CTX a3a8091c4c48aa9ed263ff0749df95d44fef6albb578ec69456aa5408ae32¢c7a
CTX f08ad7ba8921287e3bbee31b767be06ale705c864a769137df28292283ea81a2
CTX 480241b44d9921cdbec1bc28dc1fdal14bdB8e5217ac9d8ebafa720e9da4f9ace
CTX 231cc949e5b96fe 76ffc21063fddc83ab6b8679c00d35e09576a875305bed5f36
CTX ed242c8900dd1fa965bc950dfce09b132263a1eef52dd6888c30915a7d7 12826
TAG a9fe02bbb70c062c93d958bc32936609a25a1ffa2dcd9f33aee88be73d943d4f
TAG dcbd459c0ecb0111c9c74cfcf2d5104f5f8262ae52444d6e744d8046f7 3ec7f2

D.5.4 XTS-AES-256-HMAC-SHA-512 test vector 4

Key1 2718281828459045235360287471352662497757247093699959574966967627
Key2 3141592653589793238462643383279502884197169399375105820974944592
HMK e19¢c148c56a3aab73747 1aabad4909f06a17705e98bb8ee347e253¢c26cbf00cch
HMK 3147ec26beb88413da0268d39bb4a707678277al0c927c10f565496d0fe3349d5
AAD e3e220f1f7f8ef20f9eB820ece520e1e9ed20ebea2lelea2lecfdfaf220f4e2f9
AAD 20e7e1e5f8ed20f0e7eeelded 20fOf6f6ed 20ebea2eldla

DUS ffffffff000000000000000000000000

PTX 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
PTX 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
PTX 404142434445464748494a4b4c4d4ed4f505152535455565758595a5b5c5d5e5f
PTX 606162636465666768696a6b6c6d6ebf707172737475767778797a7b7cid7e7f
PTX 808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f
PTX alala2a3adababa’a8a%9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf
PTX cOc1c2c3cdchebecB8cY9cacbeeccdeecfdld1d2d3d4d5ded7d8d9dadbdedddedf
PTX elele2e3edeSebeie8efeaebecedeeeffOf1f2f3f4f5f6f 7 f8fOfafbfcfdfeff

PTX 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
PTX 202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
PTX 404142434445464748494a4b4c4d4ed4f505152535455565758595a5b5c5d5e5f
PTX 606162636465666768696a6bbc6d6ebf/07172737475767778797a7b7cid7erf
PTX 808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f
PTX alala2a3adababa7a8a%9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf

91

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

PTX c0c1c2c3c4chcbe7c8c9cachecedeecfd0d1d2d3d4d5d6d7d8d9dadbdedddedf
PTX elele2e3edebebe7e8e9eaecbecedeeeffOf1f2f3f4f5f6f7f8fOfafbfcfdfeff

CTX bf53d2dade78e822a4d949a9bc6766b01b06a8ef70d26748c6a7fc36d80aedch
CTX 520f7c4ab0ac8544424fa405162fef5abb7f229498063618d39f0003ch5fb8d 1
CTX c86b643497da1ff945c8d3bedecadf479702a7a735f043ddb1d6aaade3cd4alac
CTX 7ca7f3fab279bef56f82cd7a2f38672e824814e10700300a055e1630b8f1cb0e
CTX 919f5e942010a416e2bf48chb46993d3cb6a51c19bacf864785a00bc2ecff15d3
CTX 50875b246ed53e68bebf55bd7e05cfc2b2ed6432198a6444b6d8c247fab941f5
CTX 69768b5c429366f1d3f00f0345b96123d56204c01c63b22ce78baf116e525ed9
CTX 0fdea39fa469494d3866c31e05f295ff21fea8d4e6e13d67e47ce722e9698a1c
CTX 1048d68ebcde76b86fcf976eab8aa9790268b7068e017a8b9b749409514f1053
CTX 027fd16c3786ea1bac5f15cb79711ee2abe82f5cf8b13ae73030ef5b9ed4457e7
CTX 5d1304f988d62dd6fc4b94ed38baB831dad4b763497 1b6cd8ec325d9¢c61c00f1df
CTX 73627ed3745a5e8489f3a95¢c69639¢c32cd6e1d537a85f75cc844726e8a72fc00
CTX 77ad22000f1d5078f6b866318c668f1ad03d5a5fced5219f2eabbd0aasc0f460
CTX d183f04404a0d6f469558e81fab24a167905ab4c7878502ad3e38fdbe62a4155
CTX 6cec37325759533ce8f25f367c87bb5578d667ae93f9e2fd99bcbc5f2fbba88c
CTX f6516139420fcff3b7361d86322c4bd84c82f335abb152c4a93411373aaa8220
TAG abbabc0886b9f7c7f16644449dc6fa549d4909969dab34f85287cd5a76bc6cd 1
TAG d58f3436f0654cad9987e04b95d54900d2a3e09¢5264041941b5b56ba26¢cd7c2

D.5.5 XTS-AES-256-HMAC-SHA-512 test vector 5

Key1 2718281828459045235360287471352662497757247093699959574966967627
Key2 314159265358979353238462643383279502884197169399375105820974944592
HMK 6273d67c8fd3f0b06d1801507f3e42c06dd6d2a831914ad9439790fa9525a349
HMK da015634fee3bc417e41c3012174806c3242ae474e66c9f81f597ebd4b7ca2ca
AAD 4f6e63652075706f6e20612074696d652c207468657265207761732061206e6f
AAD 6e636f6e666f726d696e672073706172726f772077686f206465636964656420
AAD 6e6f7420746f20666c7920736f75746820666f72207468652077696e7465722¢
AAD 20486f77657665722c20736f6f6e207468652077656174686572207475726e65
AAD 64207 36f20636f6c6420746861742068652072656¢c756374616e746c79207374
AAD 617274656420736f757468776172642e20496e20612073686f72742074696d65
AAD 2c2069636520626567616e20746f20666f726d206f6e206869732077696e6773
AAD 20616e642068652066656c6c20746f20656172746820696e2061206261726e79
AAD 6172642c20616c6d6f73742066726f7a656e2e204120636f7720706173736564
AAD 20627920616e642063726170706564206f6e20746865206c6974746c65207370
AAD 6172726f772e205468652073706172726f772074686f75676874206974207761
AAD 732074686520656e642e20427574207468656e20746865206d616e7572652077
AAD 61726d65642068696d20616e6420646566726f73746564206869732077696e67
AAD 732e205761726d20616e642068617070792¢c2061626c6520746f206272656174
AAD 68652c206865207374617274656420746f2073696e672e204a75737420746865
AAD 6e2061206c61726765206361742063616d6520627920616e642068656172696e
AAD 6720746865206366697270696e672c20696e/7665737469676174656420746865
AAD 20736f756e64732e205468652063617420636c65617265642061776179207468
AAD 65206d616e7572652c20666f756e6420746865206368697270696e6720737061
AAD 72726f7720616e642070726f6d70746c79206174652068696d2e0a0a54484520
AAD 4d4752414¢c204f46205448452053544f52590a0a312e204576657279616e6520
AAD 77686f207368697473206f6e20796f75206973206e6f74206e65636573736172
AAD 696c7920796f757220656e656d792e0a322e2045766572796f6e652077686f20
AAD 6765747320796f75206f7574206f662073686974206973206e6f74206e656365
AAD 73736172696¢c7920796f757220667269656e642e0a332e20416e642¢c20696620
AAD 796f75277265207761726d20616e6420686170707920696e20612070696c6520
AAD 6f6620736869742c206b65657020796f7572206d6f7574682073687574210a0a

92

IEEE Std 1619.1-2018
IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices

DUS ffffffffff0O000000000000000000000

PTX 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1elf
PTX 202122232425262728292a2b2¢2d2e2f303132333435363738393a3b3c3d3e3f
PTX 404142434445464748494a4b4c4d4edf505152535455565758595a5b5¢c5d5e5f
PTX 606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f
PTX 808182838485868788898a8b8c8d8e8f909192939495969798999a9b9¢c9d9e9f
PTX a0ala2a3adababa7a8a9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf
PTX c0c1c2c3cdc5cbe7c8c9cachececdeecfd0d1d2d3d4d5d6d7d8d9dadbdedddedf
PTX elele2e3edebebe7e8e9eaecbecedeeeffOf1f2f3f4f5f6f7f8fOfafbfcfdfeff

PTX 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1elf
PTX 202122232425262728292a2b2¢2d2e2f303132333435363738393a3b3c3d3e3f
PTX 404142434445464748494a4b4c4d4edf505152535455565758595a5b5¢c5d5e5f
PTX 606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f
PTX 808182838485868788898a8b8c8d8e8f909192939495969798999a9b9¢c9d9e9f
PTX a0ala2a3adababa7a8a9aaabacadaeafbOb1b2b3b4b5b6b7b8b9babbbcbdbebf
PTX c0c1c2c3cdcscbe7c8c9cachecedeecfd0d1d2d3d4d5d6d7d8d9dadbdedddedf
PTX elele2e3ededSebe7e8e9eaecbecedeeeff0f1f2f3f4f5f6f7f8fOfafbfcidfeff

CTX 64497e5a831e4a932c09be3e5393376daa599548b816031d224bbf50a818ed23
CTX 50eae7e96087c8a0db51ad290bd00c1ac1620857635bf246¢c176ab463be30b80
CTX 8da548081ac847b158e1264be25bb0910bbc92647108089415d45fab1b3d2604
CTX eBa8eff1ae4020cfa39936b66827b23f371b92200be90251e6d73c5f86de5fd4
CTX a950781933d79a28272b782a2ec313efdfcc0628f43d744c2dc2ff3dcb66999b
CTX 50c7ca895b0c64791eeaasbf29499fb1c026f84ceb5b5¢c72ba1083cddb5ced5434
CTX 631665¢333b60b11593fb253c5179a2c8db813782a004856a1653011e93fb6d8
CTX 76c18366dd8683f53412c0c180f9c848592d593f8609¢ca736317d356e13e2bff
CTX 3a9f59cd9aeb19cd482593d8c46128bb32423b37a9%adfb482b99453fthe25a41b
CTX fefeb4aalbefb5ed24bf73c762978025482c13115e4015aac992e5613a3b5c2f6
CTX 85b84795cb6e9b2656d8c88157e52c42f978d8634c43d06fead28f2822e465aa
CTX 6576e9bf419384506cc3ce3cd4ac1a6f67dc66f3b30191e698380bc999b05abe
CTX e19dc0cbdcc2dd001ec535ba18deb2df1a101023108318c75dc98611a09dc48a
CTX Oacdec676fabdf222f07e026f059b672b56e5cbc8e1d21bbd867dd9272120546
CTX 81d70ea737134cdfce93b6f82ae22423274e58a0821cc5502e2d0ab4585e94de
CTX 6975beS5elbdefce51cd3e70c25a1fbbbd609d27 3ad5b0d59631¢531f6a0a57b9
TAG 0664e417f6740411cc10c55d6a8cbf43b7ad21f95f0f6b4751b6049990d13136
TAG 8fef3f1b42e172fbbec6b8133fdcbb8dccf3fed9c345818dclae11ace07e0c43

53

IEEE STANDARDS ASSOCIATION

Consensus

WE BUILD IT.

Connect with us on:
n Facebook: https://www.facebook.com/ieeesa
u Twitter: @ieeesa
m LinkedIn: http://www.linkedin.com/groups/IEEESA-Official-lIEEE-Standards-Association-1791118
m IEEE-SA Standards Insight blog: http://standardsinsight.com
YouTube: |[EEE-SA Channel

IEEE

standards.ieee.org

Phone: +1 732 981 0060 Fax: +1 732562 1571
© IEEE

