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Foreword

ISO (the International Organization for Standardization) and I|IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with 1SO and IEC, also take part in the work. In the field of information
technology, ISO and |IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International

Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and |IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 15946-5 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 27, IT Security techniques.

ISO/IEC 15946 consists of the following parts, under the general title Information technology — Security
techniques — Cryptographic techniques based on elliptic curves:

- Part 1: General

—  Part 5: Elliptic curve generation

\i © ISO/IEC 2009 — All rights reserved
Caopyright British Standards Institution
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Introduction

Some of the most interesting alternatives to the RSA and F(p) based systems are cryptosystems based on
elliptic curves defined over finite fields. The concept of an elliptic curve based public-key cryptosystem is
rather simple:

— Every elliptic curve over a finite field is endowed with an addition operation "+”, under which it forms a
finite abelian group.

—  The group law on elliptic curves extends in a natural way to a “discrete exponentiation™ on the point group
of the elliptic curve.

—  Based on the discrete exponentiation on an elliptic curve, one can easily derive elliptic curve analogues of
the well-known public-key schemes of Diffie-Hellman and ElGamal type.

The security of such a public-key system depends on the difficulty of determining discrete logarithms in the
group of points of an elliptic curve. This problem is — with current knowledge — much harder than the
factorization of integers or the computation of discrete logarithms in a finite field. Indeed, since Miller and
Koblitz in 1985 independently suggested the use of elliptic curves for public-key cryptographic systems, the
elliptic curve discrete logarithm problem has only been shown to be solvable in certain specific, and easily
recognizable, cases. There has been no substantial progress in finding an efficient method for solving the
elliptic curve discrete logarithm problem on arbitrary elliptic curves. Thus, it is possible for elliptic curve based
public-key systems to use much shorter parameters than the RSA system or the classical discrete logarithm
based systems that make use of the multiplicative group of a finite field. This yields significantly shorter digital
signatures and system parameters.

This part of ISO/IEC 15946 describes elliptic curve generation techniques useful for implementing the elliptic
curve based mechanisms defined in |ISO/IEC 9796-3, ISO/IEC 11770-3, I|ISO/IEC 14888-3, and
ISO/IEC 18033-2.

It is the purpose of this part of ISO/IEC 15946 to meet the increasing interest in elliptic curve based public-key
technology by describing elliptic curve generation methods to support key-exchange, key-transport and digital
signatures based on an elliptic curve.

© ISO/IEC 2009 - All rights reserved V
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Information technology — Security techniques —
Cryptographic techniques based on elliptic curves —

Part 5:
Elliptic curve generation

1 Scope
ISO/IEC 15946 specifies public-key cryptographic techniques based on elliptic curves.

This part of ISO/IEC 15946 defines elliptic curve generation techniques useful for implementing the elliptic
curve based mechanisms defined in I[SO/IEC 9796-3, I[SO/IEC 11770-3, [ISO/IEC 14888-3 and
ISO/IEC 18033-2.

The scope of this part of ISO/IEC 15946 is restricted to cryptographic techniques based on elliptic curves
defined over finite fields of prime power order (including the special cases of prime order and characteristic
two). The representation of elements of the underlying finite field (i.e. which basis is used) is outside the scope
of this part of ISO/IEC 15946.

ISO/IEC 15946 does not specify the implementation of the techniques it defines. Interoperability of products
complying with ISO/IEC 15946 will not be guaranteed.

2 Normative reference(s)

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 15946-1, Information technology — Security techniques — Cryptographic techniques based on
elliptic curves — Part 1: General

3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.

3.1
definition field of an elliptic curve
field that includes all the coefficients of the equation describing an elliptic curve

3.2
elliptic curve
cubic curve without a singular point

NOTE 1 A definition of a cubic curve is given in [29].

© ISC/IEC 2009 — All rights reserved 1
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NOTE 2  The set of points of E under a certain addition law forms an abelian group. In this part of ISO/IEC 15946, we
only deal with finite fields F as the definition field. When we describe the definition field F of an elliptic curve E explicitly, we
denote the curve as E/F.

NOTE 3 A detailed definition of an elliptic curve is given in Clause 4.
[ISO/IEC 15946-1:2008]

3.3
finite field
field containing a finite number of elements

NOTE 1 A definition of field is given in [29].

NOTE 2  For any positive integer m and a prime p, there exists a finite field containing exactly p™ elements. This field is
unique up to isomorphism and is denoted by F(p™), where p is called the characteristic of F(p™).

[ISO/IEC 15946-1:2008]

3.4
hash-function
function which maps strings of bits to fixed-length strings of bits, satisfying the following two properties:

—  for a given output, it is computationally infeasible to find an input which maps to this output;
—  for a given input, it is computationally infeasible to find a second input which maps to the same output.
[ISO/IEC 10118-1]

NOTE 1 Computational feasibility depends on the specific security requirements and environment.

NOTE 2  For the purposes of this document, the recommended hash-functions are those defined in ISO/IEC 10118-2
and ISO/IEC 10118-3.

3.5
nearly prime number
positive integer n = m-r, where m is a large prime number and r is a small smooth integer

NOTE The meaning of the terms large and small prime numbers is dependent on the application, and is based on
bounds determined by the designer.

3.6
order of an elliptic curve E(F)
number of points on an elliptic curve E defined over a finite field F

3.7
smooth integer
integer r whose prime factors are all small (i.e. less than some defined bound)

4 Notation and conversion functions

4.1 Notation

In this part of ISO/IEC 15946, the following notation is used to describe public-key systems based on elliptic
curve technology.

B An embedding degree, the smallest B such that #E(F(q)) | qB—1.

2 © ISO/IEC 2009 — All rights reserved
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An elliptic curve, given by an E'C]UEI.TiDEI of the fngm Y22= X° + aX +b over the field F(p™) for
p>3, by an equation gf thf form Y + XY =X" +aX" +b over the field F(2M), or by an
equation of the form Y~ = X" + aX™ + b over the field F(3™), together with an extra point

O

referred to as the point at infinity. The elliptic curve is denoted by E/F(p™), E/F(2™),
or E/F(3™M), respectively.

NOTE 1 In applications not based on a pairing, E/F(p) or E/F(2™) is preferable from an efficiency
point of view. In applications that use a pairing, E/F(p) or E/F(3™) is preferable from an efficiency point
of view.

The order (or cardinality) of E(F(q)).
A prime divisor of #E(F(q)).
The number of points on an elliptic curve E over F(q), #E(F(q)).

The cofactor, that is #E(F(q)) = rn.

4.2 Conversion functions

For the purposes of this part of ISO/IEC 15946, the following conversion functions, defined in
ISO/IEC 15946-1:2008, are used.

BS2IP

BS20SP

EC20SPe
FE2IPE
FE20SPr
12BSP
120SP
I2ECP
052BSP
OS2FEPF
OS2ECPe

OS2IP

The bit string to integer conversion primitive

The bit string to octet string conversion primitive

The elliptic curve point to octet string conversion primitive
The finite field element to integer conversion primitive

The finite field element to octet string conversion primitive
The integer to bit string conversion primitive

The integer to octet string conversion primitive

The integer to elliptic curve conversion primitive

The octet string to bit string conversion primitive

The octet string to finite field element conversion primitive
The octet string to elliptic curve point conversion primitive

The octet string to integer conversion primitive

5 Framework for elliptic curve generation

5.1 Types of trusted elliptic curve

There are a number of ways in which a user can obtain trust in the provenance of an elliptic curve, including

the following.

—  The curve may be obtained from an impartial trusted source (e.g. an international or national standard).

—  The curve may be generated and/or verified by a trusted third party.

© ISO/IEC 2009 — All rights reserved 3
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—  The curve may be generated and/or verified by the user.

5.2 Overview of elliptic curve generation
There are three main ways to generate elliptic curves.

—  Generate an elliptic curve by applying the order counting algorithms to a (pseudo-)randomly chosen
elliptic curve. Such a technique is specified in Clause 6.

—  Generate an elliptic curve by applying the complex multiplication method. Such a technique is specified in
Clause 7.

—  Generate an elliptic curve by lifting an elliptic curve over a small finite field to that over a reasonably large
field. Such a technique is specified in Clause 8.

6 Verifiably Pseudo-Random Elliptic curve generation
6.1 Constructing Verifiably Pseudo-Random Elliptic Curves (prime case)

6.1.1 Construction algorithm

The following algorithm produces a set of elliptic curve parameters over a field F(p) selected
(pseudo-)randomly from the curves of appropriate order, along with sufficient information for others to verify
that the curve was indeed chosen pseudo-randomly.

NOTE 1  The algorithm is consistent with [16].

It is assumed that the following quantities have been chosen:

—  lower bound nmin for the order of the base point.

— acryptographic hash function H with output length Lnash bits.

—  the bit length L of inputs to H, satisfying L 2 Luash.

The following notation is adopted below:

- V= [ l0g2 p] :

— 5=l{v—1}fLHashJ,

— W=V-SlLHasn- 1.

Input: a prime number p; lower bound nmin for n; a trial division bound Imax.

Output: a bit string X; EC parameters a, b, n, and G.

a) Choose an arbitrary bit string X of bit length L.

b) Compute h =H (X).

c) Let Wobe the bit string obtained by taking the w rightmost bits of h.

d) Convert X to an integer Z = BS2IP(X).

4 © ISO/IEC 2009 — All rights reserved
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e) Forifrom 1tos do:

1) Convert the integer (Z + i) mod 2t to a length-L bit string Xi using 12BSP.
2) Compute Wi =H (X).
f) Let W be the bit string obtained by the concatenation of Wo, W4, ..., Ws as follows:
W =Wo || W1 || ... || Ws.
g) Convert W to a finite field element c = OS2FEP (BS20SP (W)).
h) Ifc=0For4c + 27 = 0r, then go to Step a).
i) Choose finite field elements a, b € F(p) such that b # Or and cb? - a3 = OF.

NOTEZ2 The simplest choice is a=c¢ and b =c. However, an implementer may want to choose differently for
performance reasons.

j) Compute the order #E(F(p)) of the elliptic curve E over F(p) given by y2 = x3 + ax + b.

K) Test whether #E(F(p)) Is a nearly prime number using the algorithm specified in 6.1.2. It so, the output of
the algorithm specified in 6.1.2 consists of the integers r, n. If not, then go to Step a).

) Check E(F(p)) satisfies the MOV-condition specified in B.2.3, that is the smallest integer B such that n
divides @B - 1 ensures the desirable security level. If not, then go to Step a).

m) Test whether #E(F(p)) * p in order to be secure against the attack specified in B.2.2. If not, then go to
Step a).

n) Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based on
ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to Step a).

0) Generate a point G on E of order n using the algorithm specified in 6.1.3.
p) Output X, a, b, n, G.
NOTE 3  The necessity of near primality is described in B.2.2.

NOTE 4  Methods to compute the order #E(F(p)) are described in [5], [26] and [29].

6.1.2 Test for Near Primality

Given a lower bound nmin and a trial division bound Imax, the following procedures test N = #E(F(p)) for
near primality.

Input: positive integers N, lmax, and Nmin.

Output: if N is nearly prime, output a prime n with nmin < n and a smooth integer r such that N = rn. If N is not
nearly prime, output the message “not nearly prime”.

a) Setn=N,r=1.
b) For |l from 2 {0 lmax do
1) If I is composite then go to Step 3).

2) While (I divides n)

© ISC/IEC 2009 — All rights reserved 5

Ciopyright British Standards Institution
Provided by IHS under license with BSI - Uncontrolled Copy
Mo reproduction or natworking pamitted without licenss from IHS Mot for Resala



BS ISO/IEC 15946-5:2009
ISO/IEC 15946-5:2009(E)

-  Setn=n/landr=rl.
—  If n < nmin then output “not nearly prime” and stop.
3) Nextl.
c) Testn for primality.
d) If nis prime then output r and n and stop.
e) Output “not nearly prime”.

NOTE Methods to test for primality are described in [3] and [4].

6.1.3 Finding a Point of Large Prime Order

If the order #E(F(q)) of an elliptic curve E is nearly prime, the following algorithm efficiently produces a random
point in E(F(q)) whose order is the large prime factor n of #£(F(q)) = m.

Input: an elliptic curve E over the field F(q), a prime n, and a positive integer r not divisible by n.
Output: if #£(F(q)) = rn, a point G on E of order n; if not, the message “wrong order.”

a) Generate a random point P (not Og) on E.

b) SetG =rP.

c) If G =0Oe then go to Step a).

d) SetQ =nG.

e) If Q # Oe then output “wrong order” and stop.

fy  Output G.

6.1.4 Verification of Elliptic Curve Pseudo-Randomness

The following algorithm determines whether an elliptic curve over F(p) was generated using the method of
6.1.1. The quantities Luash, L, v, s, and w, and the hash function H, are as in 6.1.1.

Input: a bit string X of length L, EC parameters q =p, a, b, n, and G = (xg, yg), and a positive integer Nmin.
Qutput: “True” or “False”.
a) Compute h =H (X).
b) Let Wo be the bit string obtained by taking the w rightmost bits of h.
c) Convert X to an integer Z = BS2IP(X).
d) Forifrom 1 tos do:
1) ComputeZ=2Z +imod 2L,
2) Convert Z mod (2L) to a bit string Xi = I2ZBSP(Z).

3) Compute Wi =H (X).

6 © ISO/IEC 2009 — Al rights reserved
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e) Let W be the bit string obtained by the concatenation of Wo, W4, ..., Ws as follows:
W=Wo || Wi]|... || Ws.
f)  Convert W to a finite field element c = OS2FEP (BS20SP (W)).
g) Verify the following conditions.
= N 2 Nmin
- nisaprime.
- c* OF
-  dc + 27 * O
-  b=#* Of
—  cb2-a3=0r

— G * O

2 3
— Yy g=Xg+axg+Dh.

— nG = O

h) If all the conditions in Step g) hold, then output “True”; otherwise output “False”.
6.2 Constructing Verifiably Pseudo-Random Elliptic Curves (binary case)

6.2.1 Construction algorithm

The following algorithm produces a set of elliptic curve parameters for a pseudo-random curve over a field
F(2m), along with sufficient information for others to verify that the curve was indeed chosen pseudo-randomly.

NOTE 1 The algorithm is consistent with [16].

It is assumed that the following quantities have been chosen:

- afield F(2m)

—  alower bound nmin for the order of the base point

— acryptographic hash function H with output length Lnash bits

—  the bit length L of inputs to H, satisfying L = Lxasn.

The following notation is adopted below:

- 5=l{m-1)fLHaan,

— W =m - SLHash.

Input: a field F(2m); a lower bound nmin for n; a trial division bound Imax.

Output: a bit string X; EC parameters a, b, n, and G.

© ISO/IEC 2009 - All rights reserved 7
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a) Choose an arbitrary bit string X of bit length L.
b) Compute h =H (X).
c) Let Wjybe the bit string obtained by taking the w rightmost bits of h.
d) Convert the length-L bit string X to an integer z using BS2IP.
e) Forifrom 11tos do:
—  Convert the integer (z + i) mod (24) to a length-L bit string Xi using 12BSP.
—  Compute Wi = H (X).
f) Let W be the bit string obtained by the concatenation of Wo, W4, ..., Ws as follows:
W =Wo || Wi ]| ... || Ws.
g) Convert the length-m bit string W to a field element b using BS20SP and OS2FEP.

h) If b =0r then go to Step a).

) Let a be an arbitrary element in F(2m). (The simplest choice is a = Or. However, one may want to choose
differently for performance reasons.)

1) Compute the order #E(F(2™)) of the elliptic curve E over F(2™m) given by y2 + xy = X3 + ax? + b.

k) Test whether #E(F(2m)) is a nearly prime number using the algorithm specified in 6.1.2. If so, the output of
the algorithm specified in 6.1.2 consists of the integers r, n. If not, then go to Step a).

) Check E(F(2™)) satisfies the MOV-condition specified in B.2.3. If not, then go to Step a).

m) Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based on
ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to Step a).

n) Generate a point G on E of order n using the algorithm specified in 6.1.3.
o) Output X, a, b, n, G.

NOTE 2  The necessity of near primality is described in B.2.2.

NOTE 3  Methods of computing the order #E(F(2™)) are described in [5], [26] and [29].

6.2.2 Verification of Elliptic Curve Pseudo-Randomness

The following algorithm verifies the validity of a set of elliptic curve parameters. In addition, it determines
whether an elliptic curve over F(2m) was generated using the method of 6.2.1.

The quantities Lnash, L, s, and w, and the hash function H, are as in 6.2.1.

Input: a bit string X of length L, EC parameters q = 2™, a, b, n, and G = (xs, ys), and a positive integer Nmin.
Qutput: “True” or “False”.
a) Compute h =H (X).

b) Let Wq be the bit string obtained by taking the w rightmost bits of h.

c) Convert the bit string X to an integer z via BS2IP.

8 © ISO/IEC 2009 — All rights reserved
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d) Forifrom 1tos do:

1) Convert the integer (z + i) mod (24) to a length-L bit string Xi via I2BSP.

2) Compute Wi =H (X).
e) Let W be the bit string obtained by the concatenation of Wo, W1, ..., Ws as follows:

W =Wo || W1 || ... || Ws

fy  Convert the length-m bit string W to the field element b’ via BS20SP and OS2FEP.
g) Verify the following conditions.

— N2 Nmin

— nisaprime.

- b=*0F

— b=Db

— G *# O

2 3 2
— yg+x{3y{3=}{g+a}(g+b

— nG = O

h) If all the conditions in Step g) hold, then output “True”; otherwise output “False”.

7 Constructing Elliptic Curves by Complex Multiplication

7.1 General Construction (prime case)
The following algorithm produces an elliptic curve E over F(p) with the given number of rational points N.
NOTE 1  The algorithm is based on [11], which is applied to primality proving [4].

Input: The definition field F(p) and the number of points N = rn, where n is the largest prime divisor of N and r
Is a cofactor. |

Output: curve parameters of elliptic curve E with #E(F(p)) = N and base point G

a) Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based on
ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then execute a new input.

b) Sett=p+1-N.

c) Choose a pair of integers (D,V) such that 4p - t2 = DV2,

d) Construct the Hilbert class polynomial Po(X).

e) Find a solution jgin F(p) of Po(X) = 0 modulo p.

fy Choose c € F(p)* and construct an elliptic curve over F(p) with the j-invariant jo.

—  Ebyjo,c: ¥2 = X3 + (3¢2jo / (1728 - jo))x + 2630/ (1728 - jo) (if jo * Or, 1728).
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—  Eb,jo,e: ¥2 = X3 + ¢ (if jo = OF).

—  Eb,jo,e: ¥2 = x3 + cx (if jo = 1728).
g) Construct a random point G on Ep,jo,c (F(p)) such that G # Oe and r-G # Okg.
h) SetG=rG.

1) If n-G = Og, output curve parameters of Ep,jo,c and the base point G. If n-G * Og, go to Step f) to choose
another c.

NOTE 2  Any pair of integers (D,V) such that 4p - t2 = DV2 can be used in Step c).

NOTE 3  The definition of the Diophantine equation used in Step c) is given in A.5.

NOTE 4  The definition of the Hilbert class polynomial Po(X) is given in A.2.

7.2 MNT curve (Miyaji-Nakabayashi-Takano curve)

The following algorithm produces an elliptic curve E over F(p) with the embedding degree B = 6, which is
useful for cryptosystems based on a bilinear pairing. The pairing and the embedding degree are described
in A.3 and B.2.2, respectively.

NOTE 1 Detailed information is given in [20].

Input: lower and upper bound (odd integer) pmin and pmax for the definition field (in bits) and upper bound Dmax
for size of D.

Qutput: prime p, curve parameters of elliptic curve E/F(p), the order n = #E(F(p)), and basepoint G.
a) Choose a small positive integer D < Dmax such that D = 3 (mod 8) and go to Step ¢).

b) If such D does not exist, then stop and output “fail".

c) Find a pair of integers (T,U) with the smallest U > 0 that satisfies T2 - 3DU2? = 1 using the continued
fraction algorithm.

d) Find a pair of integers (x, y) that satisfies x2 - 3Dy2 = -8 and
0 = x <2U+(2D), 2v(2/D) = y < 2T~ (2/D),
using the algorithm of Lagrange. If not, go to Step a).
e) i=0.
fy  Find a pair of primes (p,n) as follows:
1) Compute integers x; and yi such that xi + yiv/(3D) = (x + yv(3D)) (T + U~(3D))L.
2) lIfxi=1(mod 6),thens=(xi-1)/6 andp =4s2-1;
— elseif x;=-1(mod 6), thens = (xi+ 1)/6 and p = 4s2 - 1;
- else,i=i+1andgo to Step 1).
3) If p<pmin, theni=i+1andgoto Step 1).

4) If p > pmax, then go to Step a).
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5) Ifpisprime,thenni=4s2+2s+1andnz=4s2-2s + 1;
— else,i =i+ 1andgoto Step 1).

6) If n1 or nz prime, then n = n1 or n = nz, respectively and go to Step g);
— else,i=i+1andgoto Step 1).

g) Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based on
ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to Step a).

h) Construct the Hilbert class polynomial Pp(X).
i)  Find a solution jyin F(p) of Po(X) = 0 modulo p.
i)  Choose c € F(p)* and construct an elliptic curve over F(p) with the j-invariant jo.
—  Ebjo,e: y2=x3 4+ (3¢o /(1728 - jo))x + 2c3jo/ (1728 - jo) (if jo * Or, 1728).
—  Eb,jo,e: ¥2 = x3 + ¢ (if jo = OF).
—  Eb,jo,c: ¥2 = x3 + cx (if jo = 1728).
k) Construct a random point G on Ebp,jo,c (F(p)), not equal to the point at infinity Ok.
) If n-G = Ok, output p, E, n, and G.
m) Else, go to Step h) to choose another c € F(p)*.
NOTE 2  The definition of the Hilbert class polynomial Pp(X) is given in A.2.
NOTE 3  The continued fraction algorithm in Step c¢) is given in A.3 and [23].
NOTE 4  The algorithm of Lagrange in Step d) is given in A.4, [18] and [21].

NOTE 5 A technique for speeding up a protocol based on a bilinear pairing is described in [6].

7.3 BN curve (Barreto-Naehrig curve)

The following algorithm produces an elliptic curve E over F(p) with the embedding degree B = 12, which is
useful for cryptosystems based on bilinear pairings. The embedding degree is described in B.2.2.

NOTE 1 Detailed information is given in [6].

Input: the approximate desired size m of the curve order (in bits) and upper bound (odd integer) pmax for
the definition field |

QOutput: prime p, curve parameters of elliptic curve E/F(p), the order n = #E(F(p)), and basepoint G.

a) LetP(u) = 36y + 36U+ 24u”+ Bu + 1.

™ such that [ log; F’{-u}] =
m. b) Compute the smallestu = 2

c) While p = pmax
1) t=6u2+1.

2) p=P(ujandn=p+1-t.
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3) If p and n are prime then go to Step e).
4) p=Puyandn=p+1-t.
5) If p and n are prime, then go to Step e).
6) u=u+1andgoto Step 1).

d) Stop and output “fail”.

e) Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based on
ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to Step a).

) b=0.

2

g) Ifb+1isnotrepresentedbyb + 1=y,
2

modulo p for an integer y,, then b = b + 1 and go to Step g).

=x+b.
h) Set an elliptic curve E: y

i) Compute a square root y,= +(b + 1) modulo p.
j) Setthe basepoint G = (1, yg) € E.

kK) 1fn-G# Og, thensetb=b + 1 and go to Step g).
)  Output p, E, n, and G.

NOTE 2 A technique for speeding up a protocol based on a bilinear pairing is described in [6].

7.4 F curve (Freeman curve)

The following algorithm produces an elliptic curve E over F(p) with embedding degree B = 10, which is useful
for cryptosystems based on a bilinear pairing. The embedding degree is described in B.2.2.

NOTE 1 Detailed information is given in [13].

Input: lower and upper bound pmin and pmax for the size of the definition field (in bits) and upper bound Dmax for
size of D.

Output: prime p, curve parameters of elliptic curve E/F(p), the order n = #E(F(p)), and basepoint G.

a) Choose a small positive integer D < Dmax such that D = 43 or 67 (mod 120) and 15D is square-free and go
to Step c).

b) If such D does not exist, then stop and output “fail”.

C) Find a pair of integers (T,U) with the smallest U > 0 that satisfies T2 - 15DU? = 1 using the continued
fraction algorithm.

d) Letd=T-UY(15D).
e) Letg=d2if T2-15DU2 = -1, and let g = d otherwise.

fy  Find a pair of integers (x, y) that satisfies x2 - 15Dy2 = -20 and 0 < x < 10U+(3D), 2+1/(3D) < y < 2T~/ 1/(3D)
using the algorithm of Lagrange.

g) For the solution (x, y) in Step f).
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1) If x =25 (mod 15), then:
- Lets=(-5%x)/15.
—  Letp =25s4+ 2583 + 2552 4+ 10s + 3.
—  Letn =25s% + 2583 + 1582 + 5s + 1.
2) Else, go to Step f) to the next (x, y).
3) If p> pmax, go to Step f) to use the next (x, y).
4) Else if p < pmin, then go to Step 6).
5) If p and n are primes, go to Step h).
6) Find a pair of integers (x’, y') such that x" + y'v15D = (x + y¥15D)-g.
7) Letx =x and y=y and return to Step 1).

h) Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based on
ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to Step a).

)  Construct the Hilbert class polynomial Pp(X).

j)  Find a solution j;in F(p) of Po(X) = 0 modulo p.

k) Choose ¢c € F(p)* and construct an elliptic curve E over F(p) with j-invariant jo:
—  Ebjjo,e 1 y2=x3+(3c%o/ (1728 - jo))x + 2¢3)y/ (1728 - jo) (if jo # O, 1728).
—  Ebjjo,c i y2 =x3 + ¢ (if jo = OF).
—  Ebjjo,c:¥2=x3+ cx (if jo = 1728).

)  Construct a random point G on Ep,jo,c(F(p)), not equal to the point at infinity Ok.

m) If n-G = Oeg, output p, E, n, and G.

n) Else, go to Step k) to choose another c € F(p)*.

NOTE 2  The definition of the Hilbert class polynomial Po(X) in Step i) is given in A.2.

NOTE 3  The continued fraction algorithm in Step c¢) is given in A.3 and [23].

NOTE 4  The algorithm of Lagrange in Step f) is given in A.4, [18] and [21].

NOTE S5 A technique to speed up a protocol based on a bilinear pairing is described in [6].

7.5 CP curve (Cocks-Pinch curve)

The following algorithm produces an elliptic curve E over F(p) with arbitrary embedding degree B, which is
useful for cryptosystems based on a bilinear pairing. The embedding degree is described in B.2.2.

NOTE 1  Detailed information is given in [7].

Input: a positive integer B and a set R of prime numbers n (n-1 is divisible by B).
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Qutput: prime p, curve parameters of elliptic curve E/F(p), the order n.-r = #E(F(p)), and basepoint G.
a) Choose a small square-free positive integer D and n in R such that -D is a square modulo n.

1) Find a B-th root of unity z in F(n)\{0, 1}.

2) t'=z+1

3) y'=(t-2)/ V(-D) (mod n)

4) Lett be an integer such that t is equal to t' modulo n, and let y be an integer such that y is equal to y'
modulo n.

NOTEZ2 t=tandy=y are permitted.

5) p-= (f+ Dy°) / 4

6) |If p is not prime, then go to Step a).

b) Test whether the prime divisor n satisfies the condition described in B.2.4 for cryptosystems based on
ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5. If not, then go to Step a).

c) Construct the Hilbert class polynomial Pp(X).

d) Find a solution jgin F(p) of Po(X) = 0 modulo p.

e) Choose c e F(p)* and construct an elliptic curve over F(p) with the j-invariant jo.
—  Eb,jo,c: y2 =x3 + (3c2o / (1728 - jo))x + 2¢3o/ (1728 - jo) (if jo * OrF, 1728).
—  Eb,jo,e: ¥2 = %3 + ¢ (if jo = OF).
—  Ebjo,e: ¥2 = %3 + cx (if jo = 1728).

fy Setacofactorr=(p+1-t)/n.

g) Construct a random point G on Ep,jo,c(F(p)) such that G # O and r-G # Ok.

h) SetG=rG.

) If n.G = Og, output n, G, and the elliptic curve E.

|) Else, goto Step e) to choose another c € F(p)*.

NOTE 3  The definition of the Hilbert class polynomial Po(X) in Step c) is given in A.2.

NOTE 4 A technique for speeding up a protocol based on a bilinear pairing is described in [6].

8 Constructing Elliptic Curves by Lifting

The following algorithm produces an elliptic curve E over F(p™) by lifting an elliptic curve E over F(p).
NOTE The algorithm is based on [29].

Inputé small finite field F(p), elliptic curve E over F(p), lower and upper bound Nmin and Nmax for the order of
elliptic curve (in bits).
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Output: extension degree m, order Nm = #E(F(p™)), basepoint G, and order n of G.
a) Count the order of N = #E(F(p)), which is easily executed since F(p) is small.
b) Sett=p +1-N and compute algebraic integers a and 3 that satisfyt=a + B and p =a .
c) Setm=1.
d) Find a triple of (m, Nm, n) as follows:
1) Compute Nm=pm™+1—(am+ (™) and q = p™, which is an integer.
2) If Nm < Nmin, then m =m + 1 and go to Step 1).
3) If Nm > Nmax, then stop and output “fail”.

4) Test whether N is a nearly prime number using the algorithm specified in 6.1.2. If so, the output of
6.1.2 consists of the integers r and n. If not, then m = m + 1 and go to Step 1).

5) Check whether E(F(q)) satisfies the MOV-condition specified in B.2.3, that is the smallest integer B

such that n divides g8 — 1 ensures the desirable security level. If not, then m=m + 1 and go to
Step 1).

e) Generate a point G on E(F(q)) of order n using the algorithm specified in 6.1.3.

f)  Qutput an extension degree m, the order Nm = #E(F(q)), a basepoint G and the order n.
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Annex A
(informative)

Background information on elliptic curves

A.1 j-invariant

Let F(qg) be a finite field with g = p™, where prime p > 3. Let E be an elliptic curve over F(q) given by the short
Welerstrass equation,

Y2=X3+aX +bwitha,be F(q),

where the inequality 4a® + 27b2 * Or holds in F(q). Then the j-invariant is defined as
j = 1728-(4a3)/(4a3 + 27b2).

Let F(2m), for some m = 1, be a finite field. Let E be an elliptic curve over F(2m) given by the equation
Y2 + XY = X3+ aX +bwitha, be F(2m)

where b # Or. Then the j-invariant is defined as
j=1/b.

Let F(3m), for some m = 1, be a finite field. Let E be an elliptic curve over F(3™m) given by the equation
Y2=X3+aX2+bwitha, be F(3m)

such that a, b # Or. Then the j-invariant is defined as

j = -a%b.

A.2 Hilbert class polynomial

The construction of elliptic curves by complex multiplication uses the theory of imaginary quadratic fields
Q(~-D). In the case of the imaginary quadratic field Q(~-D), the Hilbert class field K is the extension field
of Q(+-D), which is the unramified abelian extension of Q(~-D). The Hilbert class polynomial Pp(X) is defined
by

the minimum polynomial of K over Q(+-D). In the construction of elliptic curves by complex multiplication, the
fact that the j-invariants of elliptic curves E/F(p) are given as a solution of a Hilbert class polynomial Pp(X)
modulo p is used.

NOTE 1 These facts are described in [7] and [10].

NOTE 2  Online databases of Hilbert class polynomials are available in [17].

A.3 Cryptographic pairing

A cryptographic pairing en satisfies the conditions of non-degeneracy, bilinearity, and computability. A pairing
en I1s defined over < G1 > X < G2 > as follows,

en.:<G1>%x<G2>— U,
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where < G1 > and < G2 > are the cyclic groups of order n and pn is the cyclic group of the n-th roots of unity. A
pairing en is realized by restricting the domain of the Weil or Tate pairings.

A.4 Pell Equation

The Pell equation is of the form
T2 -dUz2z= 1,

where d is a fixed integer. In the construction of elliptic curves by complex multiplication, the Pell equation with
a positive integer d that is not a perfect square is used. Then all positive integer solutions of (T,U) are given by
using the least positive solution (To,Uo) with the smallest Up > 0 as follows:

T+ Uvd = (To + Upvd)k
fork=1,2,....

NOTE These facts are described in [24].

A.5 The Diophantine equation x> —dy?=n

In the construction of elliptic curves by complex multiplication, the Diophantine equation x2 — dy2 = n Is used.
Here n is an integer and d is a positive integer that is not a perfect square. The number of integer solutions of
this equation is zero or infinite. All positive solutions (X, y) are given by using the least positive solution (To,Uo)
with the smallest Uo > O of the related Pell equation of T2 — dU? = 1.

NOTE Details are described in [24].
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Annex B
(informative)

Background information on elliptic curve cryptosystems

B.1 Definition of cryptographic problems

B.1.1 The elliptic curve discrete logarithm problem (ECDLP)

For an elliptic curve E/F(q), the base point G € E(F(q)) with order n, and a point Pe E(F(q)), the elliptic curve
discrete logarithm problem (with respect to the base point G) is to find the integer x € [0, n-1] such that P = xG
if such an x exists.

The security of elliptic curve cryptosystems is based on the believed hardness of the elliptic curve discrete
logarithm problem.

B.1.2 The computational elliptic curve Diffie-Hellman problem (ECDHP)

For an elliptic curve E/F(q), the base point G € E(F(q)) with order n, and points aG, bG € E(F(q)), the
computational elliptic curve Diffie-Hellman problem is to compute abG.

The security of some elliptic curve cryptosystems is based on the believed hardness of the computational
elliptic curve Diffie-Hellman problem.

B.1.3 The decisional elliptic curve Diffie-Hellman problem (ECDDHP)

For an elliptic curve E/F(q), the base point G € E(F(q)) with order n, and points aG, bG, Y € E(F(q)), the
decisional elliptic curve Diffie-Hellman problem is to decide whether Y = abG or not.

The security of some elliptic curve cryptosystems is based on the believed hardness of the decisional elliptic
curve Diffie-Hellman problem.

B.1.4 The bilinear Diffie-Hellman problem (BDHP)

The bilinear Diffie-Hellman problems are described in two ways according to the corresponding cryptographic
bilinear maps.

—  For two groups < G1> and < Gz> with order n, a cryptographic bilinear map en : < Gi>x< Gz>— pn, aGy,
bGi1e <Gi>, and aGz, cG2 € < Gz>, the bilinear Diffie-Hellman problem is to compute en(G1, Gz)abe,

—  For a group < G1> with order n, a cryptographic bilinear map en : < Gi>%< Gi1> — dn, and aGi, bG1 cGs
e < G1>, the bilinear Diffie-Hellman problem is to compute en(G1, G1)abe.

The security of some elliptic curve cryptosystems is based on the believed hardness of the elliptic curve
bilinear Diffie-Hellman problem.

B.1.5 The elliptic curve discrete logarithm problem with auxiliary inputs (ECDLP with
auxiliary inputs)

The security of some cryptosystems is based on the elliptic curve discrete logarithm problem with auxiliary
iInputs. Some of them are as follows (the notation follows from the original definitions of the problems in B.1.1,
B.1.2, and B.1.4).
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- ECDLP with additional inputs x2G, x3G, ..., xkG
- ECDHP with additional inputs a2G, a3G, ..., akG
- BDHP with additional inputs a2G1, a3Gq, ..., akG

B.2 Algorithms to determine discrete logarithms on elliptic curves

B.2.1 Security of ECDLP

The security of ECDLP depends on the selection of elliptic curves E/F(q) and the size n of the order of the
base point G. The size of n should be 160 bits or more to achieve the desired level of security.

This section gives the overviews of algorithms to solve ECDLP. The elliptic curve E/F(q) shall be chosen to
meet the defined security objectives against the following algorithms to solve ECDLP. The size of n shall be
set to meet the defined security objectives against the baby-step-giant-step algorithm and various variants of
the Pollard p algorithm.

B.2.2 Overview of algorithms
The following techniques are available to determine discrete logarithms on an elliptic curve:

- The Pohlig-Silver-Hellman algorithm. This is a “divide-and-conquer” method which reduces the discrete
logarithm problem for an elliptic curve E defined over F(q) to the discrete logarithm in the cyclic
subgroups of prime order dividing # E (F(q)).

—  The baby-step-giant-step algorithm and various variants of the Pollard-p algorithm.

NOTE 1  The various variants of the Pollard-p algorithm are described in [29].

—  The algorithm of Frey-Rlck and the Menezes-Okamoto-Vanstone algorithm which both transform the
discrete logarithm problem in a cyclic subgroup of E with prime order n to the smallest extension field
F(gB) of F(q) such that n divides (g8 - 1), where B is called the embedding degree. The Frey-Rick
algorithm runs under weaker conditions than the algorithm published by Menezes-Okamoto-Vanstone.

—  The algorithm of Araki-Satoh, Smart and Semaev which solves the discrete logarithm problem for an
elliptic curve E defined over F(p™) in the case #E (F(p™)) = p™.

Unlike the situation of the discrete logarithm in the multiplicative group of some finite field there is no known
“index-calculus” available in the case of elliptic curves. As for attacks using covering for special type of covers,
e.g. the Weil descent attack, the GHS attack, etc. See Chapter 22 of [5].

NOTE 2 The Pohlig-Silver-Hellman and baby-step-giant-step algorithms work generally on all kinds of elliptic curves
while the Frey-Rick, the Menezes-Okamoto-Vanstone, Araki-Satoh, Smart, and Semaev algorithms work only on curves
with special properties.

B.2.3 The MOV-condition

Let n be as defined in the set of elliptic curve domain parameters, where n is a prime divisor of #E(F(q)) and g
is a power of a prime p. A value B is given as the smallest integer such that n divides pE - 1. As mentioned
above, the Frey-Rick and Menezes-Okamoto-Vanstone algorithms reduce the discrete logarithm problem in

an elliptic curve over F(q) to the discrete logarithm in the finite field F(p®) for some B = 1. By using the attack,
the difficulty of the discrete logarithm problem in an elliptic curve E/F(q) is related to the discrete logarithm

problem in a finite field F(p8). The subfield-adjusted MOV-condition describes the degree B that ensures the
security level of the discrete logarithm problem in an elliptic curve by the discrete logarithm problem in finite

field. For some applications based on the Weil and Tate pairing, a reasonably small value of B such as 6 or
more is preferable.
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NOTE Information on the degree B is described in [15].

B.2.4 The condition of prime divisor n

For some cryptosystems based on ECDLP, ECDHP, or BDHP with auxiliary inputs as in B.1.5, the prime
< d < n' and
divisor n should satisfy the following conditions: there is no divisor d of n - 1 such that (log n)

2 1/2 o 1 ,
there is no divisor e of n + 1 such that (log n) < e <n'2 The divisors d and e are possibly composite.

NOTE Detailed information on d and e is given in [8].
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Annex C
(informative)

Numerical examples

C.1 Numerical examples of Verifiably Pseudo-Random Elliptic Curves

C.1.1 Introduction

Refer to [12] for this Clause. The parameters are chosen from a seed using SHA-1.

C.1.2 Elliptic curve over a prime field (192 bits)

D litiiigiiiiigiinnfiiiucCailinmiiiiiii
2192_264_1

Equation of E yZ=x3+ax+b
a FEEEFFFF FREFAFCT FRAFAF FFfffe FRFFFFFF fFFFFFC
b 64210519 e59c80e7 Ofa7e9ab 72243049 feb8deec c146b9b1
(seed) X 3045ae6f c8422f64 ed579528 d38120ea e12196d5
(compressed) G 03 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012
(uncompressed) G 04 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1794811
n frFFff fEFFFFF T 99def836 146bc9b1 b4d22831
(cofactor) r 1
C.1.3 Elliptic curve over a prime field (224 bits)
p iliiiii

ffffffef fiFffeef fiffFff 00000000 00000000 00000001

2224_296_ 1

a Hiiiiiii

fiffffef FIFFFeef fifffffe fAFFFFFF FAFAFFFF FFffe
b b4050a85

0c04b3ab 5413256 5044b0b7 d7bfd8ba 270b3943 2355ffb4
(seed) X db713447 99d5c7fc dcd45cb59f a3b9ab8f 6a948bcd
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(compressed) G 02 b70e0cbd
6bb4bf7f 321390b9 4a03c1d3 56¢21122 343280d6 115¢c1d21

(uncompressed) G 04 b70e0cbd 6bb4bf7f
32139009 4a03c1d3 56¢c21122 343280d6 115¢c1d21 bd376388
b5f723fb 4c22dfeb cd4375a0 5a074764 44d58199 85007e34

N iiliiid
fiffffff ffffff fiff16a2 eOb8f03e 13dd2945 5¢c5c2a3d

(cofactor) r 1

C.1.4 Elliptic curve over a prime field (256 bits)

P ffffffff 00000001
00000000 00000000 000000O0O frffrer frFHeHt AT

2224(232_1) 4219242961

A ffffffff 00000001
00000000 00000000 00000000 frrfffff FFFFf fifffffc

B 5ac635d8 aa3af93e7
b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e 27d2604b

(seed) X c49d3608 86e70493 6a6678e1 139d26b7 819f7e90

(compressed) G 03 6b17d1f2 e12c4247

f8bcebeb 63a440f2 77037d81 2deb33a0 f4a13945 d898c296

(uncompressed) G 04 6b17d1f2 e12c4247 f8bcebed 63a440f2
77037d81 2deb33a0 f4a13945 d898c296 4fe342e2 fe1a7fOb 8ee7eb4a
7c0f9e16 2bce3357 6b315ece cbb64068 37bf51f5

N feffrfff 00000000
fifffff fifffif bce6faad a7179e84 f3b9cac2 fc632551

(cofactor) r 1

C.1.5 Elliptic curve over a prime field (384 bits)

P L FEFEFFFF FRFFAFAFF FAFFAFAT FRFFAFAAF FAFFFFFT FRAFAFA
: fffffff fifffffe fiffff 00000000 00000000 ffffffft

2384_9128_996 4 932_1

A | FEFFFEee FEFFFFFF FEFFFFFT FPFFAFFT FTFFFFTT FPFFFFT
fiffffef fifffffe fiffffif 00000000 00000000 fffffffc

B b3312fa’ e23ee7ed 988e056b e3f82d19 181d9cbe fe814112
0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

(seed) X a335926a a319a27a 1d00896a 6773a482 7acdac/3
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03 aa87ca22 be8b0537 8ebl1c/1e f320ad74 6e1d3b62 8ba79b98

59f741e0 82542a38 5502125d bf55296¢c 3a545e38 72760ab7

04 aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98

59f741e0 82542a38 5502125d bf55296¢ 3a545e38 72760ab7 3617deda
96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c e9da3113 b5f0b8c0
0a60b1ce 1d7e819d 7a431d7c 90eale5f

fEFFFEFf FEFFEFEF FRFFFFFF FRFAFAFAF FPFFFFFF FAFFFFFF
c7634d81 f4372ddf 581a0db2 48b0a77a ecec196a ccc52973

C.1.6 Elliptic curve over a prime field (521 bits)

P

(seed) X

(compressed) G

(uncompressed) G

(cofactor) r

WRhigiiiniidiiiiiiiminnndiiiiiiii
fIFAFeef FEFAFFF FAFAFAET FFFAFEF FIFAFAFF FAFFFFF FRFFFAFF FAFFFFT FFFFFFT FFAAFFT FFFFFFT AR

2521_1

O ff FHFFFFF FAFAFFF FPFFAFAF FAFFFFAT
FAFFFFer FEFFFFAF FAFAFAFF FEFFFFAF FAFAFAFF FEFAFAFF FAFAFAAFF FPFAFAF FRFAFAFF FPFFFFFT FRFAFAFF FFFfffC

0051 953eb961 8e1c9al1f 929a21a0 b68540ee
a2da725b 99b315f3 b8b48991 8ef109e1 56193951 ec7e937b
1652c0bd 3bb1bf07 3573df88 3d2c34f1 ef451fd4 6b503f00

d09e8800 291cbB853 96¢cc6717 393284aa a0da564ba

0200c6 858e06b7 0404e9cd 9e3echb6 2395b442
9c648139 053fb521 f828af60 6b4d3dba a14b5e77 efe75928 fe1dc127
aZffaBde 3348b3c1 856a429b f97e7e31 c2e5bd66

04 00c6858e 06b70404 e9cd9e3e
cb662395 b4429c64 8139053f b521f828 af606b4d 3dbaal4b
del7efer 5928fel1d c127a2ff aBde3348 b3c1856a 429bf97e
7e31c2e5 bd660118 39296a78 9a3bc004 5¢c8a5fb4 2c7d1bd9
0854449 579b4468 17afbd17 273e662c 97ee7299 5ef42640
c550b901 3fad0761 353c7086 a272c240 88be9476 9fd16650

O ff AT FAFFFFFF FFFFFAT FRFFAFES
fiffffef AT i fifffffa 51868783 bf2f966b 7fcc0148 f709a5d0
3bb5c9b8 899c47ae bb6fb71e 91386409

C.2 Numerical examples of MNT curve

C.2.1 Introduction

The examples of Miyaji-Nakabayashi-Takano (MNT) curve in this Clause are given in [22].
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C.2.2 Elliptic curve over a prime field (160 bits)

P 8c72d321 e48aa141 9b22f914 cb43c112 b76d7ae5
a 8c72d321 e48aa141 9b22f914 cb43c112 b76d7ae2
b 299ce219 b7b01348 fc2b5007 b6ab1ee1 00567617
(compressed) G 03

00000000 00000000 00000000 00000000 00000002

(uncompressed) G 04
00000000 00000000 00000000 00000000 00000002
Obe8f0d3 623edada cedc2fac a541679b 002f1d07

n 8c72d321 e48aa141 9b23b6b2 e4a85a07 382264 0f

(cofactor) r 1

C.2.3 Elliptic curve over a prime field (256 bits)

D f6529c2a 424a6332
b1d5054e 2f7b68aa ee7ef918 74dd140c 6919af9b 719ed905

a f6529c2a 42426332
b1d5054e 2f7b68aa ee/ef918 74dd140c 6919af9b 719ed902

b 6e974d68 efd4f266
ae3dd5d1 f97¢c497c 1d5452d1 b074a6¢0 6a25d4eS 819ccdic

(compressed) G 02 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000003

(uncompressed) G 04 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000003 693d7af8 c4a29f8d e56e4 7 7f
f569661c 4dcd2227 aac17b09 e4b4b0b7 03b978ce

n f6529c2a 424a6332
b1d5054e 2f7b68ab e99c585a 8419aeSf b45c620e Sef6b6e3

(cofactor) r 1

C.3 Numerical examples of BN curve

C.3.1 Summary

All of the following examples are chosen so that p is the largest prime satisfying p = 3 (mod 4) and p = 4 (mod 9)
for the largest parameter u with minimum Hamming weight, allowing the extension field F(p?) to be
represented as F(p)[i}/(i¢ + 1) and the extension field F(p2™) to be represented as F(p?)[z]/(zm-v) form =2, 3, 6
and v = 1 + i. Computation of square (or cube) roots needed for point and/or pairing compression is also
simplified in both F(p) and F(p2?). Furthermore, the curve equation has the form E: y2 = x3 + 3 with the obvious
basepoint G = (1, 2), and the sextic twist E'/F(p?) of the form E’: y'? = x3 + 3v contains a subgroup of order n
and cofactor h = 2p - n, with basepoint G' = hGo" where Go' is a point with x-coordinate xo’ = 1. Finally, the
isomorphism w: E'/F(p2) — E/F(p'2) takes the form w(x’, y') = (X’ v-'2z4, y'v-123), with z6 = v. These properties
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effectively facilitate the implementation of the (plain or compressed) Tate or Weil pairing e: E x E' - F(p2m),
with optimal pairings especially benefiting from the sparse form of u. Detailed information on these examples
is given in [6].

C.3.2 Elliptic curve over a prime field (160 bits)

D ffffffda 48afd02c ccf4fe55 0dc1ddf3 f4046e43

a 0

b 3

(compressed) G 02 00000000 00000000 00000000 00000000 00000001

(uncompressed) G 04 00000000 00000000 00000000 00000000
00000001 00000000 00000000 00000000 00000000 00000002

n ffffffda 48afd02c ccf3fe55 Odd4badS 95810cdd

(cofactor) r 1

C.3.3 Elliptic curve over a prime field (192 bits)

D fiftffts 26bac3db 23661124 138543e9 110186¢1 f247719b

a 0
D 3
(compressed) G 02

00000000 00000000 00000000 00000000 00000000 00000001
(uncompressed) G 04

00000000 00000000 00000000 COO00000 00000000 00000001
00000000 00000000 00000000 00000000 00000000 0O0O0O0O0OZ

n fffffffo 26bac3d5 23661123 f38543ee 8ba2eb5d 35910e65

(cofactor) r 1

C.3.4 Elliptic curve over a prime field (224 bits)

° fff10728 8ec29e60 2c4520db 42180823 bb907d12 8?12?833ﬁﬁﬁﬁ

a 0
b 3
(compressed) G 02 00000000

00000000 00000000 00000000 OOO00000 00000000 00000001
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(uncompressed) G 04 00000000 00000000
00000000 00000000 00000000 00000000 00000001 OOO0O0O00
00000000 00000000 00000000 00000000 00000000 00000002

n niiiliii
fff10728 8ec29e60 2c4420db 4218082b 36¢c2accf f76c58ed

(cofactor) r 1

C.3.5 Elliptic curve over a prime field (256 bits)

D et fifcfOcd

46e5f25e ee71a49f Ocdc65fb 12980a82 d3292ddb aed33013
a 0
b 3
(compressed) G 02 00000000 00000000

00000000 00000000 00000000 OOOO0000 00000000 00000001
(uncompressed) G 04 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000001 00000000 00000000

00000000 00000000 00000000 00000000 OOOO0000 00000002

n ffffff fifcfOcd
46e5f25e ee71a49e Ocdcb65fb 1299921a f62d536¢ d10b500d

(cofactor) r 1

C.3.6 Elliptic curve over a prime field (384 bits)

p frfeef fifffff fif2a968 23d5920d 2a127e3f 6fbca024

c8fbe295 31892c79 534f9d30 63282615 50a7cabd 7cccd10b
a 0
o) 3
(compressed) G 02

00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000001

(uncompressed) G 04
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000001
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000002

n frfffff FIFFFf fff2a968 23d5920d 2a127e3f 6fbca023
c8fbe295 31892c79 5356487d 8act3edf 4db17384 341a5775

(cofactor) r 1
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C.3.7 Elliptic curve over a prime field (512 bits)

P

(compressed) G

(uncompressed) G

(cofactor) r

FrFFFFFF FEFFAFA FAFAAAF fif9ec/f
01c60ba1 d8cb5307 cObbe3c1 11b0ef45 5146¢f1e acbe98b8 e48c65de
ab236fel 916a55ce 5f4c6467 b4eb2809 22adef33

02 00000000 00000000 00000000 00000000
00000000 00000000 00000000 CO000000 00000000 00000000
00000000 00000000 00000000 COO00000 00000000 00000001

04 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000001 00000000 00000000 00000000 0O0OO0O00O
00000000 00000000 00000000 00000000 00000000 0OOO0O0OO
00000000 00000000 00000000 00000000 00000000 0O0O00002

frFfffef FAFAFF A fif9ecTf
01c60ba1 d8cb5307 cObbe3dc1 11b0efd4 5146¢f1e acbe98b8 e48c65de
ab2679a3 4a10313e 04f9a2b4 06a64a5f 519a09ed

C.4 Numerical examples of Freeman curve

C.4.1 Introduction

Detailed information on the examples in this Clause is given in [13].

C.4.2 Elliptic curve over a prime field (234 bits)

P

Jo
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2a3 81f6c6d1
423bd477 5aa52e8b 38ffe9f2 36dfdd4a 4b6f5b03 8b3218db

2a3 81f6c6d1
423bd477 5aad2e8b 38ffe9f2 36dfdd4a 4b6f5b03 8b3218d8

248 268b780f
a06cef9c 31295050 153fd4c6 f94dbbeb 21d5d68d a648712b

2a3 81fbcbd1
423bd477 5aa52e8b 38cbeecb 69176e35 bb5f3716 e4fe375b

492c7f03

a9 73a6d60b
2d03c9c1 f0b998dd 65cc6903 ba365672 b7ad36ca 6e08d4bf

2232f3d6 535caaf9
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y 1084 2631acOb

(cofactor) r 1

C.4.3 Elliptic curve over a prime field (252 bits)

D e4989d4 fd7e87ff
6ff300ef d7e4393d 2c7ed585 2b0bf1c7 7b422e6f e4911f8b

a e4989d4 fd7e87ff
6ff300ef d7e4393d 2c7ed585 2b0bf1c7 7b422e6f e4911f88

b aefa431 ec51a8a3
7999461 fe75b15b f85dd6e1 19ab1142 1b798e51 ¢565610d

n e4989d4 fd7e87ff
6ff300ef d7e4393c b38a4f5e ceb8cc58 c00200ff c97e408d

D 3df4c893

Jo 3ffcBaa edacb124
39f5498d 1a8e5324 9a94a137 e75637b5 cSededb1 d1c76¢5b

X 3 42afc7c6 feb26de7

y 1b615 02ae3383

(cofactor) r 1
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Annex D
(informative)

Summary of properties of Elliptic Curves generated
by the Complex Multiplication method

In this annex, the properties of the four generating methods by complex multiplication for MNT curve, BN
curve, F curve, and CP curve, are summarized, where we use the following notation. Table 1 gives a
summary of each curve.

— E(F(p)), #E(F(p)) = rn (r: cofactor, n: prime divisor)

. B: embedding degree

= 4p- t2 = Dy2 (t: trace, D: square-free integer)

Table 1 — Summary of elliptic curves generated by the Complex Multiplication method

—— B D logz p/logz n Characteristic

All prime-order elliptic
MNT curve 3,4,6 Arbitrary 1 curves with B = 3, 4, 6 can
be constructed.

An elliptic curve withD =3

BN curve 12 3 1 and B = 12 (not all) is
constructed.
. An elliptic curve with B =10
Fcurve 1L Arbitrary 1 (not all) is constructed.
CP curve Arbitrary Arbitrary >2 logzp >2 logz n
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and receive substantial discounts on the purchase price of standards. For details
of these and other benefits contact Membership Administration. Tel: +44 (0)20
8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com

Information regarding online access to British Standards via British Standards
Online can be found at http://www.bsigroup.com/BSOL

Further information about BSI is available on the BSI| website at http://
www.bsigroup.com.

Copyright

Copyright subsists in all BS| publications. BSI also holds the copyright, in the
UK, of the publications of the international standardization bodies. Except as
permitted under the Copyright, Designs and Patents Act 1988 no extract may
be reproduced, stored in a retrieval system or transmitted in any form or by any
means — electronic, photocopying, recording or otherwise — without prior written
permission from BSI.

This does not preclude the free use, in the course of implementing the standard,
of necessary details such as symbols, and size, type or grade designations. If
these details are to be used for any other purpose than implementation then the
prior written permission of BS| must be obtained.

Details and advice can be obtained from the Copyright and Licensing Manager.
Tel: +44 (0)20 8996 7070 Email: copyright@bsigroup.com
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